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Abstract 

  This Trident Scholar project involved the synthesis of a swarm controller that is 

suitable for controlling movements of a group of autonomous robots performing underwater 

mine countermeasures (UMCM).   

 The main objective of this research project was to combine behavior-based robot 

control methods with systems-theoretic swarm control techniques to achieve a hybrid that has the 

best characteristics of both.   

 The sub-goals were:  

 a) To simulate and study a simplified version of the UMCM problem, in 2D with basic 

robot dynamics and behaviors. 

 b) To investigate the performance of both behavior-based and systems-theoretic 

controllers for UMCM, and to determine their advantages and disadvantages.  

 Careful development of behavior-based methods using a non-traditional differential 

equations approach facilitated the hybridization of the two controllers under study, giving rise to 

a more functional controller capable of controlling swarm level functions while executing the 

appropriate behaviors at the same time. 
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Preface 

 Modeled after colonies of ants or bees, autonomous robots working in cooperation have 

the potential of achieving complex functions with increased efficiency over single-unit methods.  

Cheaper, simpler robots that should comprise such a group are potentially suitable for a wide 

assortment of applications in the civil and military environment.  

 In the recent wars in Afghanistan and Iraq, robots were used to take over dangerous 

operations such as surveillance, reconnaissance, mine searching, and other repetitive missions. 

Multiple robots working together in a hostile environment may prove to be the new paradigm for 

a war in which they fight alongside soldiers in the air, on land and the sea. 

 This Trident Research Project focused on combining some of the work and theories 

conceived by other scientists and engineers to achieve a hybrid controller for underwater mine 

countermeasures (UMCM).  The hybrid controller has the best characteristics of the original 

controllers with fewer drawbacks.   

Underwater mines, which are cheap, easily fielded and capable of causing millions of 

dollars of damage, pose a major threat to navy ships.  With recent developments in technology, 

the Navy has become interested in employing Unmanned Underwater Vehicles (UUVs) and 

Autonomous Underwater Vehicles (AUVs).  The lack of human involvement is a key factor in 

employing robots for this application.  

 Eventually, robots will be programmed to conduct searches for mines autonomously 

and cooperatively, hence bringing greater automation as well as freedom of reign in water to this 

tricky problem. The results outlined in this report serve to demonstrate features of certain 

techniques as well as highlight a new hybrid controller that may eventually be implemented as a 

commercially viable controller. 
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1.  Background 

A robotic swarm can be described as a group of simple robots working cooperatively.  

Well-designed swarms ideally perform the same tasks as complex robots, but with increased 

efficiency and robustness, to withstand damage and environmental fluctuations.  These 

advantages indicate that swarms of robots may prove to be very useful in the harsh and taxing 

conditions associated with underwater mine countermeasures (UMCM).   

Common traditional UMCM methods include using specialized ships, mine hunters, and 

mine sweepers to perform mine clearance operations, or relying on divers to defuse mines by 

hand.  However, sailors are the most important asset to the Navy, and the objective of using 

modern technology is to ensure their safety.  In the 1990s, Remote-Operated Vehicles (ROVs) 

were used extensively for mine hunting and only in recent years have advances in computing 

capability and understanding of automated craft allowed Autonomous Underwater Vehicles 

(AUVs) or Unmanned Underwater Vehicles (UUVs) to become viable alternatives to ROVs.    

Currently, AUVs are employed on Navy ships, but most deployments use only a single 

unit or a pair of cooperating units to carry out simple tasks.  To increase performance in UMCM, 

suitable control architectures must be developed for swarm AUVs cooperatively carrying out a 

deliberate search scheme.   Such controllers will offer substantial increases in performance in the 

critical domain of UMCM, and may be ideal for solving the age-old problem of undersea mines.  

Applying a swarm of robots to mine hunting will improve efficiency, widen the search area as 

well as reduce the search time, and will be clearly observable (as with humans… more searchers 

are better), outweighing the performance of one or two robots.  Adding a hybrid controller may 

open up further applications for autonomous deep-sea exploration or discovery of liquid 
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environments in other planets.  Lastly, the cost of replacing a robot is less should one simple 

robot be destroyed as compared to that of a sophisticated one.  

Hardware will never work without the software that drives it and gives it intelligence.  

Several existing control strategies were considered for application in maneuvering a swarm. The 

two main groups of controls that were studied extensively are the systems-theoretic and 

behavior-based approaches. 1,2   

Systems-theoretic methods have provable performance and a well-understood design 

methodology, but are only viable when the environment is predictable and most, if not all, of the 

information about the environment is known.  Rigid programming practices in some of these 

methods tend to generate pre-planned algorithms that try to control the smallest behaviors.  By 

contrast, behavior-based approaches are flexible, simplistic and require neither large amounts of 

information nor specific details about the environment; they give rise to indeterministic yet 

interesting and useful ‘emergent’ outcomes as a result of their interactions with the environment.   

A highly effective method of controlling multiple robots is the statistical approach, which 

is currently best classified as a systems-theoretic technique.  The statistical method controls 

swarm-level functions (such as the mean and variance of the swarm) to direct the movement of 

the robots.  During the course of this project, it has been demonstrated that there is a possibility 

of combining behavior-based and statistical approaches to give a better, more functional 

controller.  The new controller generated is able to maneuver and direct a swarm of robots more 

effectively than either of the constituent methods.  That hybridization became the primary focus 

of this research. 

  Several requirements were set to select viable and effective controllers for robotic 

UMCM.  The first required that the robots be fairly simple in structure so that, while operating 
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individually, they will not be bogged down by computational complexity.   In this project, robots 

were assumed to be holonomic (able to move in any direction from any pose) and velocity 

controlled.   The next requirement was that the controller had to create a system such that a fairly 

autonomous robot swarm is able to make decisions on its own, without depending on an external 

source of information.  To achieve this autonomy, each robot was required to compromise some 

personal freedom to contribute to the overall independence of the swarm.  Centralized (each unit 

given its orders by a central controller) as well as decentralized (each unit acts independently) 

approaches were considered to determine which form of control was more applicable to UMCM.    

This paper is organized as follows.  An overview of behavior-based robotics, its roots and 

developments, is given in Section 2, followed by two separate sections on the favored behavior-

based structures:  Motor Schema (Section 3) and Subsumption (Section 4).  The relevance of 

each method to mine countermeasures is discussed in its respective section.  Section 5 covers the 

basics of statistical control and explains some discoveries that allowed behavior-based methods 

to be merged with that architecture.  Section 5 also details the components of the statistical 

controller and how they affect its actual operation.  Section 6 touches on the hybridization of the 

controllers and how it affects the predicted outcomes of the system as well as its performance 

under simulated environmental effects. Section 7 summarizes the process of the research and the 

conclusions drawn from it.  
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2. Introduction to Behavior-Based Robotics 

 What exactly are robots? According to the definition given by the Robotics Institute of 

America (RIA), “a robot is a reprogrammable, multi-functional, manipulator designed to move 

material, parts, tools, or specialized devices through variable programmed motions for the 

performance of a variety of tasks”3 Robots involved in this project, however, belong to a more 

sophisticated breed.  These Autonomous Underwater Vehicles (AUVs) or Unmanned 

Underwater Vehicles (UUVs) are categorized as intelligent robots.  “An intelligent robot is a 

machine that is able to extract information from its environment and use knowledge about its 

world to move safely in a meaningful and purposive manner.”4  In this project, simulated AUVs 

and UUVs were employed to detect mines in the highly variable oceanic environment, using 

information collected to avoid obstacles while at the same time relaying mine information to a 

mother ship. 

Artificial intelligence plays an important role in enabling robots to behave in a manner 

similar to humans, conducting their own operational decision processes. Thus, the robots used in 

this project needed to be able to recognize and differentiate between pieces of information and 

make links to the particular tasks designated by the correct information.  

Neural networks and fuzzy logic are several common means of recreating human-like 

decision structures in robots.5  These systems are especially useful when mimicking human 

decision structures in performing a complex, hard-to-model task.  Unfortunately, these methods 

typically require a great deal of training (generating enough runs to allow the system to learn and 

create a response) to be successful at even the most straightforward tasks. 

Behavior-based robotics is a much simpler method of control, based on the decision-

making capabilities of lower life forms.  The initial phase of this project focused on the 
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evaluation of behavior-based methods for the UMCM problem. This method was studied first 

because it is known to be a reactive controller that does not require exhaustive amounts of 

information.  Behavior-based robotics has two main types of structures that make it a versatile 

controller for enabling several robots to move in cooperation.  

Behavior-based robotic controllers were originally devised for robots that were to be used 

in environments that are difficult to model.6  This class of controllers reacts readily to the 

changes in the environment, unlike many traditional systems-theoretic control approaches in 

which all the unknown information or details in an area have to be accounted for to ensure that 

the robotic agents are able to move.  

Behavior-based systems, characterized by a reactive nature, generate robot responses 

based on current sensory information alone, typically through a very simple sensor-motor 

mapping.7   By responding directly to a stimulus, the system efficiently discards all other 

environmental factors irrelevant to the problem.  Simple low-level behaviors (such as 

‘Avoid_Obstacle’ or ‘Seek_Light’) are combined to form a modular, often hierarchical, behavior 

system, which collectively reacts to a variety of stimuli in varying ways.8  This combination of 

simple behaviors also leads to making the system completely indeterminate.  Another interesting 

characteristic of behavior-based systems is that in event of a sensor breakdown, the robot will 

default to a lower-level behavior and perform its task as best as it can.   

Behavior-based decision processes do not utilize the human cognitive process, but follow 

a simple sense-think-act sequence.9  Each robot uses all sensory information it gathers to select 

actions guided by specific rules. If each member of a robot swarm were equipped with an 

independent behavior-based controller, the members would be able to move independently, a 

highly regarded characteristic, since it places little computational strain on the central controlling 
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body.  In other words, this type of control is promising for creating a decentralized autonomous 

underwater control system of multiple robots.  Behavior-based control was therefore an excellent 

candidate for generating a fast and efficient means of reacting in a hostile and unknown 

environment for the UMCM problem.  

 Two specific behavior-based architectures were used for testing and implementation of 

robotic UMCM: motor schema and subsumption.  Both of these approaches were originally 

designed and intended for single-robot (decentralized) control.  Under these architectures, the 

robots each act independently, and the overall swarm behavior arises from their interactions with 

the environment and each other.   

The study of schema-based systems was adapted from Dr. Arbib, who made a link 

between behavioral expressions in nature and behavior-based controls in robotics. 10,11 The 

schema-based theory combines behaviors for numerous tasks at the same time, and demonstrates 

how the system can react based on the calculation of simple equations.  Dr. Ronald Arkin, who 

first addressed the implications of using motor schema for navigation in 1987 and later published 

several related papers, was the first researcher who focused on the method’s applications on 

autonomous robotics.12  He proposed that motor schema could be set up in such a way that there 

were direct relationships between sensors (perception agents) and the motors (end effectors) 

present in the system.  The behavioral responses were represented in vector forms using an 

Artificial Potential Fields technique that will be discussed in the next section. 

 The second approach for behavior-based architectures used subsumption structures.  Dr. 

Rodney Brooks of Massachusetts Institute of Technology first devised the concept of 

subsumption architecture in 1986.13  Brooks’ proposal was also a purely reactive system, which 

allowed the robot to decide what to do next, based entirely on current sensor data, without any 
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structured planning.14  Subsumption-based systems were built hierarchically with increasing 

complexity.  Only one behavior was expressed at any point in time as a result of a suppressor 

function that restrained other lower behaviors within the hierarchy.  The subsumption 

architecture was therefore a discrete rule-based process that allowed reactions to be triggered by 

pre-defined sensory information.  Complex robot motions arose from the combination and 

switching among simple behaviors.  

Brooks’ idea was against the mainstream definition of artificial intelligence at that time, 

which required robotic decision structures to be organized with a complete appreciation of the 

surrounding environment.  Brooks argued that the standard practice of using systems-theoretic 

methods was preventing the robot from making timely responses and forcing less flexibility in 

the control scheme.  The simplicity and flexibility of the behavior-based approach proved that it 

was capable of performing well in a highly variable environment.   

In conclusion, behavior-based robotics methods allow robots to perform tasks similar to 

humans by linking given information to a predetermined action.  Reacting to particular sources 

of information and then performing a specific task reduces the need for an understanding of the 

entire environment.  The control structure of behavior-based robots is simplistic and can be 

manipulated for practical applications.  The focus of the next segment of the project was to 

generate working examples of existing behavior-based architectures for robots performing 

underwater mine countermeasures.  
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3. Motor Schema  

 Motor schema theory states that individual behaviors that act in response to different 

sensory inputs can be combined to give a resultant control vector that incorporates all of the 

simple behaviors.  If the sensor-motor reactions can be written as simple velocity control vectors, 

this can be accomplished by a vector sum.  The most common approach for motor schema 

implementations is the use of Artificial Potential Fields. 

 

3.1. Artificial Potential Fields Theory 

Artificial Potential Fields (APFs) arose in the early days of robot motion planning as a 

simple, computationally efficient planning routine.  APF methods use simplified version of laws 

of nature, attractive and repulsive potential, to draw or repel an object (the robot) from one point 

to another.15  In motor schema, an attractive or repulsive potential constitutes a behavior that 

arises as a result of a sensory stimulus. A wide variety of behavior commands can be derived, 

such as Avoid_Obstacle, Move_to_Light and Random_Search.  

 APF theory uses the positions of two points of interest to calculate attractive and 

repulsive vectors.  The potentials are based on the vector connecting the two points of interest (in 

2D for purposes of this work).  The nature of the resulting potential will depend on the 

underlying behavior. The expressions for attractive potentials and repulsive potentials are 

slightly different since their desired reaction to a stimulus is inherently different.  

 Consider the example of an attractive potential for a robot moving towards the calculated 

centroid of a swarm (hence, an Aggregation behavior). The gradient of the potential field is 

determined by finding the difference between the position of the robot and that of the centroid.  

The angle between the two points is found by using the inverse tangent in the world coordinate 
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frame.  Lastly, the attractive vector in the x direction is found by multiplying the magnitude of 

the original vector by the cosine of the angle found, while the vector in the y direction is found 

the same way, with the only difference being multiplication with a sine.  Example MATLAB 

code for developing the attractive vector is given below, where [Xc, Yc] is the center of the group 

of robots and [ROBOT(i,1), ROBOT(i,2)] are the (x, y) position of a robot of interest. 

Mag_change=norm ([Xc-ROBOT (i, 1), Yc-ROBOT (i, 2)]); % finding the magnitude 
theta_att=atan2 (Yc-ROBOT (i, 2), Xc-ROBOT (i, 1)); %angle between two points 
 
att (i, 1)=Mag_change*cos (theta_att);    % find x attractive potential 
att (i, 2)=Mag_change*sin (theta_att);     % find y attractive potential 
 
attctrl (i,:)= Katt* att (i,:);       % attractive potential towards each other, Katt is the vector gain 
 

The effect of this attractive potential draws the robot towards the centroid.  An interesting 

observation is that the attractive potential results in rapid motion towards the destination if the 

distance is large but decreases gradually as the robot approaches the final position, finally 

stopping at the target. 

 The repulsive potential, on the other hand, does the complete opposite. The final 

calculation of the repulsive potential is highlighted by the multiplication of the x and y 

components of the vector with a (1/distance) factor.  This factor creates the opposite behavior of 

that of the attractive behavior.  As the robot moves towards an obstacle (some object in the 

environment or even another robot), the magnitude of the distance between the two points 

becomes smaller, approaching zero. As a result, the repulsive potential jumps to infinity when 

the robot is close to the object.  This infinite repulsive vector guarantees that there can be no 

collision unless some other vector also increases unboundedly.  Thus, it is common in motor 

schema systems to generate potentials that are all upper-bounded with the sole exception of the 

obstacle avoidance routine.    
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The code below demonstrates the computation of the repulsive vector.  The 

[ROBOT(i,1), ROBOT(i,2)] are the (x, y) position of a robot of interest, [OBSTACLES(position, 

1), OBSTACLES(position, 2)] are the  position of the obstacles, and Mag_L is the magnitude of 

the distance from the robot to the obstacles. The radius of the circular obstacle, r1, will be 

required for finding the exact distance between the robot and the obstacle so that it mimics the 

maximum distance from the robot to the external radius of the obstacle. Rho is the radius of the 

obstacle plus the sensing radius of the robot to the external radius of the robot. The calculation 

with the radius and angles accounts for the distances between the robot and the edge of the 

obstacle. Repobst represents the repulsive vector, which gives the resultant motion of generating 

a strong repulsive vector away from the edge of the obstacle as the robot approaches it. 

Repobst = )_sin(
1

1
)_cos(

_

1
obsttheta

rRho
obsttheta

LMag −
−  

theta_obst=atan2 (ROBOT(i, 2)-OBSTACLE(position, 2), ROBOT(i, 1)-OBSTACLE(position, 1)); 
% angle of repulsion form obstacle 
 
Xdist=(ROBOT (i, 1)-OBSTACLE (position, 1)-rl*cos (theta_obst)); 
Ydist=(ROBOT (i, 2)-OBSTACLE (position, 2)-rl*sin (theta_obst)); 
 
% Vector to show length of repulsion vector to obstacle 
Mag_L=norm ([Xdist; Ydist]); %normalize vector for magnitude of length 
repobst (i, 1)= ((1/Mag_L)*cos (theta_obst))-((1/(rho-rl))*cos (theta_obst)); 
repobst (i, 2)= ((1/Mag_L)*sin (theta_obst))-((1/(rho-rl))*sin (theta_obst)); 
 

The example shows that the theta_obst and the magnitude, Mag_L is computed similarly to that 

of the attractive potential but the repulsive vector differs in the 1/Mag_L.     

 Figure 1 shows how the attractive and repulsive vectors are summed to produce a 

resultant vector that directs the path of the robot. As the robot moves towards the endpoint, the 

attractive vector becomes shorter, representative of the decreasing value. The value of the 

repulsive vector steadily increases as the robot gets close to the obstacle, and pushes the robot 

away from it, preventing a collision.   
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Figure 1: Conceptual diagram of motion of a robot influenced by Artificial Potential Fields 

 
 
3.2. Motor Schema Controllers for UMCM 

 The potential fields methods described above are used in a behavior-based control 

method called ‘motor schema’.  The motor schema architecture is shown in Figure 2.  The first 

characteristic of motor schema is similar to most other behavior-based approaches: it is 

dependent on the environment to provide stimulus to the system to create some reaction.  The 

next characteristic is the presence of numerous environmental sensors designed to pick up 

specific changes in the environment so that the appropriate response can be triggered.  The 

information picked up by the environmental sensors is transferred to the perception schema, 

which triggers the specific response programmed.  A number of these perception schemas 

derived from different sensors play a part in creating an overall composite motor schema to tell 

the robot how to move.  Several motor schemas contribute to create a single summation 
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behavior. Figure 3 illustrates how the specific behaviors can be summed to generate a resultant 

motion in accordance to the motor schema structure.   

 
Figure 2:  Motor schema diagram16 

 

 
Figure 3: Motor schema architecture for mine hunting 
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 3.2.1 Motivation for Using Motor Schema in Robotics in General 

 There are several reasons why motor schemas are created and applied in behavior-based 

architectures. First of all, motor schemas essentially consist of simple systems that are 

fundamentally easy to execute and debug, which is helpful for generating a robust system of 

control.  This is achieved by using simple individual behaviors as the building blocks of a 

complex system.  Complexity can thus be built from the summation of these simple behaviors.  

Additionally, a system using motor schema is very capable of working effectively in an unknown 

dynamic environment.  By having the environmental sensors tuned only to pick up specific 

information, other uncertainties and contributing errors are removed.  Furthermore, this allows 

relevant information to be used only at a specific point in time once the environmental sensors 

have been fired.  Lastly, the lack of complex, pre-determined planning structure simplifies the 

system. A motor schema system makes use of pre-determined direct relationships between 

sensors and receptors, and allows the system to run freely.  Therefore the system is 

indeterministic in nature and results are an expression of the behaviors due to the environment. 

 

3.2.2 Previous and Current Work 

 Dr Ronald Arkin of the Georgia Institute of Technology has done most of the current 

work on applying APF to the motor schema behavior-based architecture. His book, Behavior-

Based Robotics, has become a popular text with college professors who are teaching about 

behavior-based robotics.  His book grew from his 1988 paper on Artificial Potential Fields 

theory, and his belief in the lack of a suitable text that addresses the theories and applications of 

behavior-based artificial intelligence. Much additional research has stemmed from his 

discoveries. 17,18 
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3.2.3 Application of Motor Schema to UMCM 

 The motor schema approach is extremely well suited for mine hunting, since the 

undersea environment is relatively unknown and filled with numerous uncertainties. Hence, 

engineers using motor schema in creating robots with behavior-based architectures may be more 

successful in such dynamic environments.  Furthermore, implementation in real life robots will 

be relatively straightforward.  The sensors used on a typical prototype would be situated around 

the robot to increase sensory detection in the environment as the robot conducts a search in a 

delineated area.  Furthermore, motor schema, when programmed into individual robots, can 

easily provide the basic instructions for moving and finding mines.  These programmed basic 

functions, combined with functions that prevent collisions, will give the robot some autonomy.  

This form of control is classified as decentralized control since the robot does not take orders 

from a central robot or receive information updates from a mother robot.  

 

3.2.4 Motor Schema UMCM Implementation 

 Several assumptions and operations are discussed before the experimental results are 

explained.  The simulated robots are assumed to be holonomic.  Holonomic robots are those that 

can move in all directions freely regardless of pose, which is unrealistic due to physical 

limitations (think of parallel parking).  However, in the simulations, holonomic robots prove to 

be extremely useful to demonstrate the effects of different behaviors without worrying about 

robot morphology and kinematics.  Some holonomic systems do exist, and certain mathematical 

tricks can be employed to make non-holonomic systems appear holonomic.19 

 The robots are all assumed to be velocity controlled.  That is, the behavior architecture is 

designed to provide a desired velocity for the robots, based on sensor input.  The robots are 
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assumed at this point to be able to follow the commanded velocity exactly.  In more advanced 

simulations, environmental stimuli such as drift currents can be included to make the situations 

more realistic.  Although acceleration-based controllers are generally preferred to the velocity 

based form that was employed in this project, the respective simulations do not differ 

significantly for a well-designed controller.20  Therefore the velocity-based simulations 

sufficiently represented the objectives of the project.  Expressing the controller in acceleration 

terms is a viable objective for future work.   

 The initial simulations presented did not include drift or other environmental effects.  It 

was assumed that the robots had full control of their sensors and that these sensors were able to  

detect their target stimulus in the water perfectly, although with limited range.  Furthermore, the 

robots were assumed to be fully communicative between each other, indicating a decentralized 

control.   

 

3.2.4.1 Attractive and Repulsive Vectors  

 Code was developed in MATLAB (see Appendix A) to simulate a simple attractive-

repulsive combination for a single robot.  The attractive behavior was ‘Begin_Search,’ while the 

repulsive was ‘Avoid_Obstacle.’  This set of basic functions formed the basis for all future APF-

based techniques.  The basic concepts are illustrated in Figure 1, while a sample run is shown in 

Figure 4.   

 The objective of the sample run shown in Figure 4 was to demonstrate the effects of the 

repulsive and attractive vector acting on a holonomic robot.  The plot shows a holonomic robot 

starting at point (0,0) and moving towards (3,5) as a result of the attractive vector.   As expected 
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from the definition of ‘Begin_Search,’ the robot initially moved at high speeds and slowed down 

when it neared the final point.   The target point was reached with no collision. 

 The deviation of the robot from a straight-line path was a result of the repulsive vector 

created by ‘Avoid_Obstacle’ as the robot neared the object.  The robot had a sensing radius of 

0.3 units that kept it away from the object.  This result stemmed from the calculation of the 

repulsion factor where it was multiplied by inverse of the magnitude of the distance between the 

robot and the obstacle, 1/Mag_L.  As the robot approached the obstacle, a huge repulsive vector 

in the opposite direction was created.  Moreover, summed with the attractive vector, the robot 

moved towards the final point even as it repelled away from the object.  

 
Figure 4: Simulation of a robot avoiding an obstacle combining 'Begin_Search' and Avoid_Obstacle' 
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3.2.4.2 Attractive and Repulsive Vectors between Robots 

 The next step in developing a motor-schema based swarm controller was to build 

behaviors for some interaction between cooperating robots.  A simulation was written (see 

Appendix B) that included three robots, each using an attractive APF toward the center of the 

three combined with a repulsive APF from nearby robots. 

 The sample run shown in Figure 5 demonstrates how this simple two-behavior motor 

schema resulted in three robots staying within a certain distance from each other in an emergent 

formation (a triangle, in this case) without collision.  It is important to note that, since the robots 

were not specified in a fixed formation, they move around the calculated center of mass, 

repositioning themselves at the optimum location, where the attractive and repulsive vectors are 

maximized.  This behavior was labeled as ‘Aggregation_Separation,’ as it combines an attractive 

potential to the center of mass with inter-robot repulsive potentials. The repulsive and attractive 

vectors are each controlled by a respective gain, which determines the spread of the robot 

positions around the center of mass.  The behaviors demonstrated were very similar to the first 

sample run since the repulsive and attractive vectors were utilized to move the robots to a pre-

determined point in space, but now multiple robots are cooperating. 

 Several major observations arose from this simulation.  Primary among these is that the 

robots were kept in a simple formation around the centroid.  The three robots kept their distance 

from the centroid at an equal distance, which created a triangular formation.  If there were four 

robots, the mean formation was a square.  As the numbers increased, the mean formation tends to 

be concentric, with no specific structure.  It was concluded that the robots generated the 

attractive and repulsive vectors correctly, and that this behavior could be combined with the first 

sample run shown in Figure 4.  
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Figure 5: Plot of 3 robots performing 'Aggregation_Separation.' Initial positions are marked with an 'O'. 

 

3.2.4.3 A Robot Swarm Moving Towards an Endpoint 

 The objective of this next sample run was to combine the two controllers generated in 

earlier programs.  The new controller was designed to move a swarm to a target centroid while 

maintaining each robot’s position with respect to the others using attractive and repulsive 

potentials. The constituent motor schema of this sample run included the schema to force the 

robots towards an endpoint (‘Begin_Search’), to cause the robots to avoid an obstacle while in 

motion, (‘Avoid_Obstacle’), and to keep a particular distance away from the other robots without 

collision, (‘Aggregation_Separation’). The results of the simulation can be seen in Figure 6.  

This run demonstrated the process of building complexity using simple behaviors.  Code can be 

found in Appendix C. 

This particular combination of different behaviors lacked a structured approach to 

organize the priority of the behaviors.  The resultant behavior was based on the sum of the 

different behaviors, so it did not differentiate the order in which the behaviors were determined 

Center of Swarm 
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in the individual decision process of the robot.  Moreover, each robot had a sensing radius of 0.3 

units, which represented a sensory buffer that would prevent the robots from getting too close to 

an obstacle or another robot.  If a robot detected any obstacles inside this buffer zone, it would 

create the repulsive vector and repel away from it.  

 
Figure 6: Plot of 3 robots avoiding an obstacle 

 
The plot in Figure 7, from the same sample run, shows the path of the robots with respect 

to time for this simulation.  From the three-variable plot, an observer can easily determine if the 

robots were moving and colliding at any given time.  If two paths of motion of the robots cross, 

it means that the robots collided.  Since the speed of the robots was not limited, the swarm 

moved rapidly towards the endpoint, completing the motion in less than 5 seconds. The speeds 

reached in this case were not representative of the speeds that could be reproduced in water. 
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Figure 7: Plot of individual robot tracks without normalized (limited) speeds. 

The following two plots, (Figures 8 and 9), show the same structure and behavior, but 

with speed limited to 1 unit/sec.  The reduction of the magnitude has specific real life application 

to make the speeds executable on real robots.21  The robots took 44 seconds to reach the final 

point.  This approach allowed the user to change the gain to a suitable value to simulate the 

speed of an AUV or UUV moving through the water.  

 
Figure 8: 3 swarming robots avoiding an obstacle with normalized tracks. 
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Figure 9: Individual robot tracks with normalized ( limited) speed. 

 
3.2.4.4 Sample Run with Multiple Obstacles and Multiple Robots 

The next simulation was developed to demonstrate the capabilities of the designed 

controller in more complex environments and with a larger number of robots.  This simulation 

included numerous obstacles that were made up of multiple circular sub-obstacles.  From the 

sample run in Figure 10, it was observed that the robots were able to avoid the obstacles while 

moving towards the final point.  The plot shows that the attractive and repulsive vectors worked 

effectively together to generate the desired motion towards the endpoint.   

Note that, as the number of robots increases (six in this case), the formation of the robots 

becomes less apparent.  This could be attributed to the change in mean positions, as the robots 

were moving; hence the robots were not able to form a consistent shape around the center of 

mass due to broad path changes resulting from obstacle avoidance.  The plot of individual tracks 

in Figure 11 shows that the robots were moving towards the endpoint without colliding with each 

other. Code for these simulations can be found in Appendix D. 
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A problem encountered during this particular run was the creation of multiple ‘meta’-

obstacles using smaller, circular obstacles. There were only certain shapes that could be created 

due to the limitation of adding individual obstacle points.  The benefit of this approach was that 

computation of the nearest obstacle point was straightforward.  However, as these shapes were 

not realistic, this problem was addressed in later simulations by creating a more complex 

obstacle field.   

 
Figure 10: Multiple robots avoiding multiple obstacles 

 

 
Figure 11: Individual robot tracks avoiding multipl e obstacles. 
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3.2.4.5 Sample Run with Polygonal Obstacles 
 

The next sample run was generated using more sophisticated obstacle modeling, with 

shapes more representative of the objects the robots might encounter in the real undersea 

environment.  As seen in Figure 12 below, the shapes of the objects resembled those of ships.  

An assumption made was that the robots would not be searching at great depths but would 

mainly focus on littoral areas where the mines are more likely to be placed. Hence, in shallow 

waters, the robots need to account for the hulls of the ships for obstacle avoidance. 

Furthermore, with the generated change in obstacles, a new program for creating the 

repulsive vector was modified and recreated from an existing program.22 The repulsive vector 

function was called to determine the closest obstacle point from each robot and to generate a 

repulsive vector away from the particular edge of the object.  From the results of the runs, it was 

seen that the programs work fairly well.  The plot of the individual tracks showed no signs of 

collision in Figure 13 and demonstrated the effectiveness of the controller in obstacle avoidance.  

Code for the new obstacle avoidance routine can be found in Appendix E. 

 
Figure 12: Plot of motor schema with new obstacles. 
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Figure 13: Individual tracks of the robots avoiding new obstacles. 

 

3.2.4.6 Additional Improvements to Motor Schema UMCM 
 
 One major limitation of motor schema can be seen in the simulation shown in Figure 14, 

where the robots collide with an obstacle.  The results come from a phenomenon that is known as 

local minima. 23,24 A robot using APF methods experiences local minima when the attractive and 

repulsive vectors exactly cancel at some point.  This occurred in the simulation when the desired 

attractive potential was exactly perpendicular to an obstacle edge.  One method to remedy this 

problem is to add a random motion behavior, ‘Noise’, so as to increase the chances of the robot 

moving out of the constrained region as shown in Figure 15.  The new schema, 

‘Random_Search’ involves a simple additive random velocity held over a small sample period, 

and proves effective for small regions of attraction to local minima.  More sophisticated 

methods, involving recorded time histories, are sometimes used in complex problems.25 
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Figure 14: Local minima of robots with associated collision. 

 

 
Figure 15: System with added 'Random_search' behavior. 

 

3.2.4.7 Robot Swarms Conducting Underwater Mine Countermeasures  
 

The next simulation that was conducted combined some of the desired effects that have 

been discussed in the runs mentioned previously.  Specifically, this simulation combined 

‘Begin_Search’ with ‘Avoid_Obstacle,’ ‘Aggregate_Separate’ and ‘Random_Search.’  The 

resultant attractive vector pointed towards a weighted combination of the final point and the 

center of mass while that of the repulsive vector pointed away from the other robots as well as 



 35 

the obstacles, with some random additive values.  The obstacles, created to resembled ships, 

were laid out to loosely represent ships steaming in a narrow stretch of water in an enclosed 

channel.  The robots were also able to repel away from those limits.  Furthermore, the robots also 

tagged the mines as they came close to them, while performing the new behavior ‘Avoid_mines’. 

‘Avoid_Mines’ is effectively identical to ‘Avoid_Obstacle’ with the exception of the additional 

tagging action.  These basic simulations served the purpose of verifying the effectiveness of the 

program by allowing a qualitative analysis of the performance of the system. 

From the results, shown in Figure 16 on the next page, it was observed that the initial 

positions of the robots formed a straight line.  When the robots began to move toward the final 

position initiated by ‘Begin_Search,’ individual robots moved to their respective relative 

positions through the action of the behavioral vector component ‘Aggregation_Separation.’  The 

second behavior allowed the robots to position themselves at a reasonable location from the 

mean position of the respective robots.  As the robots moved toward the final position, the 

distance from between each robot was gradually reduced.  ‘Avoid_Obstacle,’ was also at work, 

evident from the obstacle avoidance around an object.  The ‘Avoid_Mine’ behavior allowed the 

robots to avoid the obstacles at the same time tagging the positions of the mines.  MATLAB 

code can be found in Appendix F. 

The swarm motion patterns discussed thus far were ad hoc.  The Parallel Search And 

Rescue (SAR) pattern shown in Figure 17 was modeled after patterns adopted by the U.S. Coast 

Guard for finding downed pilots or missing personnel at sea.26  The axis of search is parallel to 

the major axis. It is a useful pattern to use when the search target has the possibility of being 

anywhere along the major axis.  Furthermore, fixed wing craft uses this pattern to cover a large 

area in a short time.  The objective of underwater mine clearance by AUVs and UUVs involves 



 36 

clearing a path for ships to pass through.  This pattern satisfies the objective by clearing a path or 

channel quickly while finding all mines and obstacles in the way. 

 
Figure 16: Robot swarm conducting UMCM 

  

 
Figure 17: Parallel SAR search pattern 

 
 Figure 18 shows the robot swarm executing a search scheme to mark all the mines in the 

sample minefield.  The robots follow specific waypoints that delineate a path of search 

mimicking the Parallel SAR pattern. The swarm exhibited good swarm maneuver capabilities, 

avoiding obstacles and mines. However, the robots were not able to knowingly perform tasks 
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according to changes in the environment. The resultant behaviors expressed were generated by a 

vector sum of numerous behaviors, but the robots had no decision-making capability.  Every 

behavior was considered equally important at all times.  

 

 
Figure 18: Robot swarm performing UMCM with motor schema 

 
3.3 Conclusions Drawn from Motor Schema 

 Some advantages of the motor schema were observed from the research conducted.  First, 

the behaviors are executed in real time, and this capability allows the robot to generate behaviors 

in accordance to specific stimulus in the environment at a particular point in time without a full 

knowledge of the environment.  Second, the potential fields cause the robots to automatically 

decelerate as they approach a target point, or accelerate away from an obstacle, which reduces 

the dependence on velocity compensation in real life.  Third, the schemas for each individual 

behavior are very modular in nature.  Throughout the process of developing the code, cutting and 

splicing individual sequences of behaviors was very straightforward.  This makes development 

and addition of future behaviors a rather easy task.  Lastly, it is worth noting that the control is 

still decentralized.  Under this control, the robots behave autonomously using available 
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information to make the right decisions.  It is important to note, however, that the scope of this 

research did not deal with how each robot determined the location of obstacles, the actual 

centroid, or its own position using available sensors.  

 Several disadvantages of a pure motor schema structure were also observed.  The lack of 

a clear decision structure made the system truly reactive.  Placing different behaviors in a 

hierarchical order would improve the functionality as well as allow certain behaviors to be 

triggered only under specific circumstances.   

 This phase of the project resulted in several major accomplishments with regards to the 

motor schema approaches shown in this section.  While the motor schema architecture is well 

known, no specific methods have been described to generate behaviors that can be matched 

precisely to such a desired objective.  That is, there is no known closed-form design 

methodology.  Nonetheless, the groundwork done to generate appropriate behaviors for the 

UMCM problem demonstrated that motor schema were viable for UMCM, and representative of 

certain desirable traits of a mine-hunting robot.  The behaviors were created using Artificial 

Potential Fields since manipulating differential equations could generate the different behaviors.  

The reduction of behaviors into differential equations made it possible for further development 

and addition into other viable structures, which will be discussed in later sections. 
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4. The Subsumption Architecture  

Another form of behavior-based controls, the subsumption architecture, was also studied 

for this research project.  The strengths of subsumption architecture make up for the weaknesses 

present in the motor schema control.  It creates a decision hierarchy, whereby a robot is able to 

make decisions based on the information currently present.  However, subsumption is also 

similar to other behavior-based controllers in that its structure is extremely reactive in nature.   

Motor schema, as discussed in Section 3, has no decision hierarchy… each behavior is a 

component of a composite behavior.  The only structure motor schema possesses is the 

summation of different potential fields contributing to the resultant force on a robot.  In a 

subsumption approach, only one behavior is active at any given time.  There are no ‘expected’ 

behaviors in a subsumption system, since the robots are made to move at run time and the robot 

has to figure out what to do next, based on the current information. 27 

  A possible application of subsumption includes multi-agent controls, which were (in 

part) investigated in this research.  The significant characteristic employed for that purpose was 

the decentralized nature of the robot control.  Some have argued that even in service industries, 

smaller modular robotic systems have clear advantages over traditional sophisticated ones in 

terms of costs and susceptibility to damage or loss.28  To interconnect and relate information 

between these robots is to use artificial intelligence structures such as subsumption. Several of 

the direct comparisons between a conventional AI and behavior-based subsumption control can 

be found in the paper written by Dr Van Dyke Parunak.29   He addresses the problems of 

conventional AI methods, including slow response, need for a central computing body, fragile 

responses to change, and difficulty in reconfiguration. The behavior-based approach, however, 
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represents what happens in reality: fast response due to calculation at run time, robust response 

to changes, and no need for a central computing agent. 

The subsumption architecture builds complexity based on simple behaviors. This form of 

decision structure overcomes traditional AI problems of integrating numerous sensors and 

having to respond to multiple task goals.  Such AI systems give specific instruction to actuators 

to respond to the perceived sensory information.  An advantage of the subsumption method is not 

overwhelming the system by taxing the computer performing the computations, but by directing 

specific reactions for different sensory information.  

Another highlight of the subsumption architecture is the use of a behavior hierarchy that 

coordinates decisions.30  Two methods of coordination are inhibition and suppression.  Inhibition 

is the prevention of the transmission of a signal, while suppression is the prevention of the 

transmission of a signal and, at the same time, replacement of that signal with the suppressing 

signal’s information.  Figure 19 shows a simple subsumption structure that has been created for 

the specific purpose of autonomous robots performing UMCM. 

 
Figure 19: Subsumption architecture of a typical robot. 
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From Figure 19, the decision structure of a robot is set up such that there is a hierarchy 

that the robot uses to decide which behavior to implement at any given time.  For instance, the 

highest priority is to avoid an obstacle, followed by searching for objects, gathering with other 

robots, and finally wandering around.  These behaviors are dictated by the environmental 

stimulus.  The circles with a letter, s, represent the suppression mechanism at work.  If the 

sensors for a higher ranked behavior are fired, the suppressor will prevent all behaviors from the 

lower ranks from being expressed.  This allows the current behavior to be the only one expressed 

at that point in time.  Once those sensors stop detecting the stimulus, the robot reverts back to the 

next lower behavior whose sensors pick up the next most important stimulus.  Again, the result 

of the subsumption architecture allows only one behavior to be expressed at a time; all other 

lower behaviors are masked.    

 

4.1 Previous Work 

 Rodney Brooks from Massachusetts Institute of Technology (MIT) originally developed 

the subsumption architecture.  He proposed that different layers of behaviors could be set in a 

hierarchy based on rules for performing specific tasks.  This form of decision structure was 

inspired by biology, as he realized that the actions of a robot could be separated and artificial 

intelligence could emerge to build complex interactions with the environment.  Several important 

aspects that Dr Brooks focused on were the facts that the robots did not need an internal model as 

was common in conventional methods, since the new architecture was able to deal with 

imperfections from the physical world and did not rely on predicting or expecting information 

that might not be available or easily modeled.31  
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4.2 Relevance of Subsumption to UMCM 

The study of the subsumption architecture was critical in generating a controller that can 

be easily embedded into hardware controls, because of the presence of a rigid decision structure.  

However, as the architecture does not specify how to generate individual behaviors, the 

development of subsumption controls relied in the initial stages on generation of suitable 

behaviors using a basis of APFs and motor schema (see Section 3).  Even though the basic 

building blocks are motor schema, the subsumption structure proved more flexible and robust as 

a controller (due to the decision capabilities).  Furthermore, embedding the motor schema 

behaviors into the subsumption architecture created a more sophisticated behavior-based system 

that duplicated the best characteristics of motor schema (when only one behavior was active) 

while adding new capabilities.  Finally, the controller still relied on behaviors that could be 

modeled with differential equations, which was an important characteristic that was desired for 

purposes of further hybridization, as will be discussed in Section 6.  

The types of controls dramatically change from continuous in motor schema to a 

switched controller in subsumption.  Nevertheless, the robots were able to generate highly 

reactive behaviors and performances that were not possible without these forms of control. 

Therefore the robots were able to perform their tasks in an organized manner yet with total 

unpredictability.  These mine hunting robots are meant to be autonomous, hence the decision 

structures were designed to be self-governing to allow the robots free reign based on the 

environmental factors at that present moment.    
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4.3 Subsumption Architecture for UMCM 

Figure 20 shows the developed UMCM subsumption structure, which consists of the 

various behaviors as created from the programs in motor schema, ‘Avoid_Mines,’ 

‘Avoid_Obstacles,’ and ‘Aggregation_Separation’ as well as the ‘Random_Search’ behavior 

(used in a different context here).  As shown above, behaviors were activated if the individual 

distance calculated exceeded the requirements, suppressing lower behaviors.   

 
Figure 20: Subsumption architecture of a mine-hunting robot. 

Pseudocode below shows the basic algorithmic flow of the subsumption architecture.   
For (number of robots) 

(1 robot at a time) 
If (distance of mine < d_Mine)  %Avoid_mine 

• Tag closest mine 
• Repulse away from the mine 

Else 
 If (dist to obstacles < d_Obst)  

• Repel from obstacles 
Else 
 If (distance to robots> d_x) %Avoid_Obstacles 

• Do nothing 
Elseif (distance to robots>d_y & distance to robots< d_x) % Aggregation 

• Find centroid of robots 
• Attractive vector towards common center 

Elseif (distance to robots<d_y & distance to robots> 0) 
• Repel away from other robots 

Else %Random Search  
• Random search for mine 
• Follow pre-plotted waypoints  
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From this pseudocode, the MATLAB simulation code was developed.  It used simple if-

else statements to act as suppressive agents to create the hierarchy of the behaviors.  

Furthermore, the presence of limits to activate certain behaviors was an accurate way to 

represent the information being detected by sensors.  If the level of the sensory information 

exceeded that of the threshold value, the behavior would fire, at the same time suppressing all 

other behaviors.  The various codes that expressed behaviors used a form very similar to those 

from the motor schema discussion (Section 3).   MATLAB code can be found in Appendix F. 

Several problems were encountered in coding the subsumption structure.  The first was 

finding a suitable suppressor element.  After much contemplation, an if-else statement was the 

simplest, most direct manner in which the suppressor could be implemented in code.  

Furthermore, it proved a difficult task to combine various lines of codes from different behaviors 

and link them to produce a combined, autonomous effect in an organized structure.  However, 

the use of velocity-based control vectors helped facilitate the application of the motor schema 

behaviors to the creation of the subsumption architecture.   

In fact, it is worth mentioning at this point that traditional behavior-based systems do not 

lend themselves to simulation.  Primary difficulties include the fact that most such architectures 

do not involve equations of motion, but simply connect sensors to motors and allow the behavior 

to ‘emerge.’  As such, it was necessary to develop velocity controllers based on APFs and motor 

schema methods as a first step to building a subsumption architecture, as these methods can be 

written to provide direct motion commands.  Even so, simulation of switched systems, such as 

subsumption-based methods, was nontrivial and required some care.  As will be seen in the 
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following section, it is this careful, systematic simulation development that led to the major 

breakthrough of this work.   

 

4.3.1 Subsumption Simulations 
 
 The subsumption code for running a swarm of robots was modeled after the pseudocode 

from the previous section (see Appendix G). In the background, at points where the robots 

appear to change direction, lie the waypoints.  The generation of such waypoints allowed the 

user to generate a certain pattern of search for the mines using the robots (see Section 3.2.4.8). 

As the robots approached the waypoints, the reduction in distance between the individual robots 

and the waypoint was calculated and compared to a set limit.  If the distance was less than the 

given limit, then the waypoint was switched to the next one, allowing the robots to change 

waypoints as they moved along the designated path.  

The results of the simulation are given in Figure 21.  As the robots moved along the 

intended path, they tagged the mines (originally marked with +) with a diamond to indicate that 

the position of the mine had been located (sensing radius for mine labeling was 1 unit).  Ideally, 

this information would be reported to a central unit to assess the threat of mines.  The plot in 

Figure 22 shows that the robots did not collide during the run. 
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Figure 21: 3 robots performing UMCM under subsumption architecture 

 

 
Figure 22: Plot of individual tracks for subsumption architecture 
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 In these simulations, mine avoidance was of utmost priority, since a robot could be 

destroyed if it ventured too close to a suspected mine.  This behavior was adopted from motor 

schema behavior, ‘Avoid_Mines.’ To limit the types of behaviors expressed when the robots 

moved close to the mines, different sizes of sensing circles were created. A circle of radius 0.3 

units around each mine simulated the region of sensitivity of the robots to the mines.  A 

significant characteristic of this behavior was embedded hysteresis.  If the robot was inside the 

inner radius, ‘Avoid_Mines’ was triggered.  That behavior remained active until the robot moved 

outside a larger, outer radius of 0.5 units. The zigzag and jagged response seen in Figure 21 

exemplifies hysteresis.  Once the robot moved out of outer circle, the robot would activate the 

next higher behavior and continue with its movement.  

The second most important behavior was to make the robots avoid the obstacles. This 

was achieved by adopting the behavior, ‘Avoid_Obstacle.’ The robots had a separation distance 

of 0.8 units to allow the robots to clear the obstacles. The observations from the code showed 

that some randomization was important because it prevented the occurrence of local minima of 

the potential fields theory found when a robot moved around an obstacle.  Even so, the 

randomization was limited because the robot had to follow certain waypoints and their individual 

paths were generally moving towards the endpoints. Since only one behavior was expressed at 

any one time, random motion for avoiding local minima was taken into consideration within 

each individual behavior.  Therefore, the robots were able to generate random motion under the 

‘Random_Motion’ behavior as well as the ‘Avoid_Obstacle’ and ‘Avoid_Mine’ behaviors.   This 

was easily accomplished due to the underlying motor schema structure. 

 The third significant behavior was the need to aggregate toward a common center while 

avoiding each other robot.  This behavior was adopted from the motor schema 
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‘Aggregate_Separate.’  When the distance between robots was between 1 to 2 units, the robots 

were too far away from each other.  Hence the robots would aggregate, or move towards each 

other to reduce the separation.  If the separation was greater than 3 units, the behavior was 

disregarded.  This allowed the robots to peel off from the main group while performing 

‘Avoid_Obstacle’.  Thus, if a robot moved in the opposite direction from the rest of the swarm 

around an obstacle, then the robot would be allowed to move randomly and perform 

‘Random_Search’ in a new area.  Furthermore, this behavior allowed the robots to have some 

freedom to move around an obstacle individually without having to sacrifice the mobility of the 

swarm to avoid the obstacle.   

The aggregation behavior was supplemented with a separation component.  If the 

distance between a given robot and its nearest neighbor was less than 0.5 units, the robots would 

repel from each other to increase the separation distance.  

Due to the limits on triggering of the ‘Aggregate_Separate’ behavior, only when specific 

values of the separation distance were met would the behaviors be triggered.  As expected, this 

resulted in inconsistent group aggregate shapes and formations. 

 The last behavior was ‘Random_Search.’ This behavior occurred when the robot was not 

performing any of the other behaviors.  The robot would move, in general, towards a pre-

assigned waypoint.  As it approached the waypoint, the movement was interjected with a lot of 

noise, to enable the robot to move in a more random manner.  When the distance to the current 

waypoint became less than 0.1 units, the next waypoint was initiated and the robot swarm 

proceeded to the next waypoint. 
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4.4 Conclusions Drawn from Subsumption Architectures 

 Several conclusions can be drawn about the performance of the subsumption architecture.  

The subsumption architecture is a reactive system that allows the individual robots to behave 

autonomously, using their own decision structure to pick the correct behavior to suit their 

movement and the environment at a particular time.  Furthermore, the subsumption approach 

may reduce the computational strain on a microprocessor as a result of the lack of computational 

complexity rising from a single point behavior at every instance in time.  The suppressor agent, 

in this case, the if-else statement, prevents any lower behavior from interacting or interfering 

with the behaviors higher up in the hierarchy.  Such controllers are easy to implement in actual 

hardware, since there is a specific structure that the robot can base its action on instead of relying 

on a diffused schema, where multiple behaviors are added together with a ‘hope for the best’ 

attitude.  The subsumption architecture implicitly creates Artificial Intelligence (AI), since the 

architecture makes decisions based on environmental feedback without a need for planning.   

The presence of the suppressor adds to that effect with the fact that it generates a yes/no response 

on different types of input, implicitly avoiding the sensor fusion problem (wherein difficulties 

commonly arise when combining data from disparate sensors for a unified controller).  

 Some problems encountered with the subsumption approach included difficulty in finding 

a particular structure suitable for UMCM as well as having indeterminate overall systems 

behaviors.  There were no set architectures or design methodologies for how robots performing 

UMCM should be created.  The process of creating the architecture required more art than 

science, since there was no one mathematical standard to generate that decision structure.  

Hence, it took creative energy to generate a functional architecture.  
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The indeterminate systems behavior arose from the fact that the robots’ responses to the 

environment were highly reactive based on the information present at a specific point in time. 

This unpredictability could be a disadvantage in real operations, since the operators would not 

have complete understanding or control of the robot swarm.  Additionally, it had been seen that 

similar architectures used for modeling birds in flight and schools of fish suffer from chaotic 

instability that is impossible to predict but simple to achieve.32  As such, the next facet of the 

research was to investigate more systematic swarm control methods that admit some closed-form 

analysis. 
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5.  Statistical Control 

As mentioned, behavior-based and system-theoretic approaches to swarm control have 

been studied extensively33.  Behavior-based systems are flexible, easy to implement and do not 

require a complete model or knowledge of the environment.  System-theoretic methods are 

commonly based on differential equations.  Such systems have provable results with well-

understood analysis tools, and are sometimes controllable through the application of 

compensators to give results that match desired specifications.34  The next phase of this project 

focused on a systems-theoretic controller that was very promising for swarm control.  The 

controller selected was the so-called ‘statistical controller.’  Statistical controllers are designed to 

manipulate the individual robots in a swarm to provably and robustly generate a desired swarm 

profile and yet still allow the units some degree of autonomy.35    

 

5.1 Introduction to Statistical Control 

Statistical swarm control was investigated to determine its suitability for UMCM.  Under 

this systems-theoretic control methodology, swarm-level functions (such as overall mean 

position and variance) can be controlled in a provable manner.  Such swarm-level functions 

dictate how a group of robots coordinates individual unit motion as the platoon transitions from 

point A to point B.   

Statistical control methods, a form of systems-theoretic control, have desirable 

characteristics for the UMCM problem.  Again, systems-theoretic control systems such as this 

are typically based on differential equations, which make them well suited for simulation and 

real implementation.  Statistical controls can be run in real time, giving rise to fairly reactive 

control by limiting the spread of the robots while at the same time allowing the robots to interact 
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and move with some autonomy.  Weaknesses of this method include rigidity in structure, 

necessity for pre-planning of swarm paths and tasks, and an overall predictability (which is an 

advantage for stability but a disadvantage for reactive searching).  The statistical control 

architecture is well suited to simulation study, since the mean and variance of the spread of the 

positions of the swarm of robots can be observed and calculated directly from the simulation 

with ease. 

 

5.2 Applications to UMCM 

 Statistical methods have the capability to coordinate the motions of each robot in a swarm 

without having to plan their individual paths and motions in advance (which is a computationally 

complex problem for large swarms).  These controllers also allow certain secondary tasks to be 

encoded in such a way as to be carried out only when not interfering with the primary (swarm-

level) tasks.  These characteristics are truly beneficial to UMCM.  The robots are free to roam or 

move in a designated area while maintaining a particular distribution limited by restrictions 

placed on the swarm.  In addition, these controllers admit simple reconfiguration of primary and 

secondary tasks, which enhances the multi-tasking capability of the robot swarm. 

 

5.3 Previous Work 

  Professor Bishop from the United States Naval Academy pioneered the theory of 

statistical controller.  He has since worked with Professor Stilwell of Virginia Tech.  They have 

developed a comprehensive statistical controller for swarming robots, but have not developed 

any task-specific implementations, such as for UMCM.   In the next few sections, the basics of 

this control are discussed, followed by a design for the UMCM problem. 
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5.4 Fundamentals of Statistical Control  

Statistical methods control swarm-level functions, such as mean and variance of the 

positions of the robots, which in turn restrict the movements of a swarm as a whole.36  The 

individual task objective of each robot remains unchanged… determining the location of the 

mines and avoiding obstacles.  The swarm, as a collective entity, obeys some desired function 

profile by coordinating the motion of the robots. 

 This approach involves using a special matrix, known as a Jacobian, that allows the 

calculation of the best velocity profile for the robots according to the set limits of the 

performance of the swarm.  Jacobian matrices are typically applied in traditional robotics to 

relate joint velocity to end-effector (tool) velocity.37  A Jacobian matrix is defined by the state q 

of the system and some task function f(q).  Denoted J (q), the Jacobian is given by: 
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where the state q is n dimensional, the task function f(q) is m dimensional, and 

qqJqf �� )()( = .38 

In a statistical controller, f(q) represents the swarm task function, which can be any 

closed-form, differentiable function of the swarm state, which is typically given by the 

concatenation of the individual units’ positions.  In this work, the state vector for an r unit swarm 

in 2D was taken to be q = [x1, x2, … , xr, y1, y2, … , yr]
T .  An example of a task function f(q), 

using swarm mean and variance, is given by39: 
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In this simple example, the mean (�
x, 

�
y) effectively determines the overall swarm position while 

the variance (σx
2 , σy

2) dictates the spread of the elements.  The Jacobian for the task vector 

given by (2) is shown in (3), (4) and (5)40: 
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5.5. Components of the Statistical Controller 

 The statistical controller as seen in Figure 23 is fundamentally a basic closed-loop 

feedback control system.  Using standard methods from feedback control allows the system to 

reach the desired values of the swarm functions f(q) at equilibrium.  The proportional (gain) 

controller brings the swarm to the desired f(q) while the null space controller (discussed below) 

moves the robots in such a way that there are no collisions.   
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Figure 23: Diagram of a statistical controller 

 

 The f(q) that was used in the simulations performed for this part of the research included 

the mean and variance of the swarm in the x and y direction, as indicated in (2).  The task-space 

controller and the Jacobian pseudoinverse continually computed the error and compensated the 

system so that the swarm followed a preferred path, moving along different waypoints defined 

by the user.  The swarm was ordered to move from point to point while each robot performed its 

mission of searching for mines and avoiding both mines and obstacles.  Each facet of the control 

will be described in the subsequent section. 

 

5.5.1 Task-Space Control  

Task-space control is a common method for systems that rely on Jacobians to convert 

from one coordinate space to another.  A controller is designed in the space defined by the task 

(here, the mean and variance of the platoon).  This control generates desired velocities in the task 
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space (here, yx µµ �� , , etc.)  The Jacobian is then used to convert those desired task-space velocities 

to the state space of the system (here, the velocities of each swarm unit).   

A proportional controller was used for the task-space component of this system because it 

is a basic compensator intended to track a desired differentiable trajectory, and because it was 

easy to implement in the system.  The controller uses a gain value, K, to magnify the error 

between the desired and actual swarm state and to compensate for that error.  The compensated 

system shows improved stability over behavior-based approaches, as it measures error and forces 

the response to the desired equilibrium.  This basic gain controller is described by (6).  Figure 24 

depicts the controller in a standard closed feedback loop.  

    C=K* e (k)    (6)  

 

 
Figure 24: Proportional gain control 

 
In the simulations performed, e(k) was the error calculated between the desired and the 

actual values of the swarm level functions after every iteration of the control code.  K was the 

control gain that was used to adjust the transient performance of the controller.   The error 

feedback and the feedforward velocity )(qf d�  (based on planned swarm trajectories) guaranteed 

perfect tracking of the desired swarm profile in the absence of disturbances (which are addressed 

in section 6.2.1). 
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5.5.2 Jacobian Pseudoinverse 

The task space controller computes desired velocities for the platoon, but the actual 

control occurs at the unit level, in state space.  The swarm state-space velocity q�  represents the 

motion of the swarm at every instant in time.   For a large swarm of robots, the number of state 

variables (x and y for each robot) is typically much greater than the number of task variables 

(swarm mean position and variance in each dimension, for example).  This redundancy creates 

an infinite number of possible configurations for the swarm while still achieving the desired 

profile.41   The basic control that achieves this task takes the following form: 

  ))())()((( qfqfqfKJq dd �� +−= +    (7) 

  1)( −+ = TT JJJJ      (8) 

where the parenthetical component of (7) is the task-space controller and J+ is the so-called 

Moore-Penrose pseudoinverse of the Jacobian, which is defined by (1) and (2) for this problem.  

The pseudoinverse is used because the Jacobian for a large swarm is non-square and thus not 

directly invertible.   The application of the pseudoinverse of the Jacobian allows the task-space 

controller to be converted to a state-space controller, generating motion commands for the units 

based on the task-space error. 

 

5.5.3 Null Space Control 

Since the proposed solution for the problem of UMCM is to use numerous robots to 

maximize capability, the swarm will inherit redundancy qualities.  The swarm has more 

members than objective functions that need to be met.  Therefore, there are more capabilities 

present than would be utilized by the pseudoinverse controller of (7)-(8). Effectively, there are an 

infinite number of configurations for the units to satisfy the desired task-space functions.  
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Redundancy resolution, taken from redundant manipulator control, is employed to manage 

swarm resources and functions by moving the swarm along the self-motion manifold (the set of 

all configurations that match the desired f(q)) toward a locally desirable configuration.  In this 

implementation, additional tasks, beyond the coded functions of f(q), are projected onto the null 

space of the Jacobian J(q), meaning that those tasks are carried out in such a manner as to leave 

the primary objectives encoded in f(q) unchanged.  

For a UMCM problem, primary tasks are maintaining the mean and variance while the 

secondary objectives are to avoid obstacles and mines.  A Jacobian null space projection term (I-

J+J)v basically allows such a swarm to compute appropriate velocities of the robots for achieving 

secondary objectives given by velocity vectors v while maintaining the primary tasks defined by 

f(q).  Although this does not make each robot fully autonomous, individual units may react to the 

environment in a constrained manner.  In simple terms, when one robot must react to an 

environmental stimulus and therefore be deflected from the nominal velocity provided by (7)-(8), 

the entire swarm reacts as a whole to guarantee that the primary task f(q) is still achieved.  In 

certain cases, the response of the units is limited by the primary tasks.  On the other hand, the 

swarm as a whole acts as an autonomous system.42   It is possible to decentralize certain tasks 

under this form of control, making the units fully autonomous, although the distinction can be 

misleading.43   

 Gradient projection methods are employed to achieve the null space control.  A 

redundancy-resolution controller is shown in (9), where )( JJI +−  is the projection term.  This 

projection operator can be thought of as a driver that forces the robot swarm to coordinate 

motion to accommodate secondary objectives.44   The secondary objectives are encoded in the 

vector v, which is often a gradient of an objective function c(q) given by qqc ∂∂ /)( .  The 
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secondary objectives as encoded in v are always state-space velocities, although they may arise 

from the gradient of a task vector. 

 vJJIqfqfqfKJq dd )())())()((( ++ −++−= ��                         (9) 

 

5.5.4 Task Arbiter 

Specific secondary tasks for the null-space control are embedded in the functional block 

labeled Task Arbiter so that the robots are able to perform some secondary tasks while moving as 

a swarm.  The design of the Task Arbiter, which represents v, required that the tasks be written in 

differential equation form for interface with the null-space projection (which requires velocity 

vectors).  An important note to make at this point is that the velocity-based secondary task can be 

anything that is in the form of differential equations that describe tasks that are also velocity 

based.   

The only secondary task defined for this controller was obstacle avoidance.  The obstacle 

avoidance task was encoded in exactly the same form as the ‘Avoid_Obstacle’ behavior from 

Sections 3 and 4, with the exception that the repulsive vectors for every robot were concatenated 

to form v.  

 In conclusion, the combination of the different components gave rise to a statistical 

controller that was capable of regulating swarm-level functions while simultaneously 

accomplishing secondary tasks defined as state-space velocity terms.  These secondary tasks 

proved to be the key to combining systems-theoretic and behavior-based controllers. 
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 5.6 Statistical Simulations  

The previous section on the fundamentals of statistical control discussed the theory on 

which the swarm controller was based.  This section demonstrates the implementation of control 

characteristics for UMCM.   

The robot swarm in these simulations used waypoints to guide its movement, moving in a 

specified path designated by the user. Given desired points and time intervals, the planned path 

trajectories were projected based on the cubic polynomial of the time in each task coordinate, µx, 

µy, σx
2
, σy

2. The initial starting point and the next waypoint were used to derive the initial 

trajectories.  The mean position of the robot swarm was required to fall along the planned 

trajectory to prove that the task space controller was able to keep the mean and variance of the 

system.      

As the swarm moved along the designated path, singularities in the Jacobian, (3), did not 

occur. A singularity for this controller could only occur when the units form a straight line along 

the x or y direction, which cannot occur unless the commanded variance in one direction is set to 

zero.  

The primary task of the statistical controller performing UMCM was to control the task 

variables, which were the mean and variance of the swarm.  The secondary task in this 

simulation of the system was purely obstacle avoidance.  These robots were meant to mimic the 

motions of actual AUVs and UUVs, and the most fundamental action was avoiding obstacles at 

all costs.  

The simulations for the statistical method were written without showing extensive 

obstacles unlike the simulations in the behavior-based simulations because of the computational 
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complexity of the calculations and the difficulty in simulating switched controllers of this sort.  

For simplicity, the obstacles were shown as circular objects.  

  

5.6.1 Simulation Results of Statistical Controller 

 One of the first considerations for running the simulation was to determine the number of 

robots simulated.  The swarm of robots was required to satisfy 4 task variables, the mean and 

variance of the positions in the x and y-plane.  The minimum number of units for redundancy 

was therefore three (each unit possessing, in our simplified environment, two DOF).  The two 

redundant degrees of freedom enabled the robots to move with some flexibility, but it did not 

allow them to avoid obstacles or mines easily.  Obstacle or mine avoidance demanded more 

degrees of freedom from the system to allow the robot swarm to react and adapt to the changing 

environment.  Therefore, the number of robots was raised to six, providing eight degrees of 

redundancy and very good swarm flexibility. 

 Three waypoints were set in this simulation to allow the robots to move from an initial 

point to a final point.  The robot swarm also displayed its ability to avoid obstacles and move 

towards targets as instructed in the task arbiter. The null-space controller compensated and 

counterbalanced the movements of the robots to allow them to adhere to the set mean and 

variances.   
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Figure 25: Plot of the motion of a robot swarm 

 

 
Figure 26: Plot of actual and desired mean and variance of statistical control 
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 The swarm of 6 robots moving through the sequence of waypoints is shown in Figure 25.  

The squares represent the robots’ position at each moment in time. The robots were observed to 

perform simple obstacle and mine avoidance tasks.  The majority of the robots in the swarm 

clumped together and moved in a similar linear formation while a single robot moved away to 

ensure that the swarm maintained the desired mean and variance.  This result shows that the 

statistical controller did not perform other tasks, such as inter-robot repulsion or random motion, 

which are highly regarded in autonomous robotic motion.  

Figure 26 shows the desired (solid) and actual (dashed) mean and variance of the platoon 

over the simulation.  The actual and desired mean and variance of the robot swarm remained the 

same with minor disparities of value 0.01.  These disparities represent simple numerical 

simulation effects. Code can be found in Appendix H and I. 

 

5.6.2 Conclusions 

 The results of the simulation show that the robot swarm had poor coverage of the area it 

was searching, and also had poor secondary task capabilities.  The main focus of the robots was 

to maintain the mean and variance while performing obstacle avoidance.  Although the robots 

kept to the projected trajectory of the swarm, they showed little individuality or autonomy when 

moving independently.  Five out of the six robots present displayed similar path characteristics 

that did not contribute to maximize the search area.  Thus, each robot in the swarm needed to 

have more autonomy to move around based on its surroundings, while at the same time staying 

within the area designated by the swarm task space control. 
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5.7 Important Discovery 

An important observation was made regarding this controller.  The behaviors designed in 

Sections 3 and 4 return velocity commands to the swarm elements, and were written in terms of 

differential equations.  The statistical controller relies on secondary tasks encoded as velocity 

commands.  Thus, the possibility of combining the controllers together became obvious.  The 

velocity-based behaviors can be included in the v that defines secondary objectives, while the 

motion and spread of the platoon are controlled in a provable manner.  Such a combination of the 

systems-theoretic and behavior-based approaches ultimately gave rise to a new hybrid controller 

with much greater functionality than either of the original controllers, as the individual 

characteristics of the two schemes were combined to provide some of the best qualities of each 

without the associated drawbacks.   
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6. Hybrid Controllers 
 
6.1 Reasons for Hybrid Control 

Based on the results from the behavior-based and statistical controllers, some conclusions 

were drawn.  Behavior-based systems were seen to be highly reactive while requiring little 

computation, even when controlling a large number of robots (since such systems tend to be 

decentralized).  Unfortunately, as exemplified by the behavior-based approaches shown in 

Sections 3 and 4, coordination and control of a group of robots using only decentralized APFs 

was not practical, nor an especially effective use of the swarm capabilities.  Although using the 

centroid as a center of mass for the swarm to calculate aggregation potentials makes sense, the 

resultant formation for a large number of robots tended to be concentric, with no specific 

structure.  In fact, for small platoons in open water, the configuration resembled the vertices of a 

regular polygon.  These behaviors were characteristic of the use of inter-robot repulsion as well 

as attraction to the centroid.  Unfortunately, this result served no real purpose for UMCM; it 

effectively constrains the platoon to a loose conglomeration formation, influenced strongly by 

the environment and the parameters of the controller.   

In the tested behavior-based systems, there was neither feedback control to ensure that 

the swarm was capable of reaching desired swarm specifications, nor even any guarantee of 

stability.  While simple combinations of repulsive and attractive forces may work for a small 

swarms of robots such as those simulated in Sections 3 and 4, such controllers may not prove 

effective if the number of units employed is in the hundreds.  This is because there is no real 

coordination between robots except through simple local reaction.  Due to this, behavior-based 

controllers for large swarms of simulated animals have been seen to suffer from stability 

problems.45 
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System-theoretic methods, on the other hand, have provable performance, being designed 

from the standpoint of stability analysis.  An analysis of the statistical controller indicated that 

even though it had great swarm level control capabilities, the controller lacked capacity to 

introduce intelligence to the system.  The robots under statistical control revealed that they 

lacked the ability to make decisions based on their surroundings.  Subsumption, on the other 

hand, showed remarkable performance in directing the robots to avoid obstacles, making 

decisions instantaneously.  Therefore it made sense to try to combine these two methods into a 

hybrid that would not only grant autonomy for each robot to move around but also constrain the 

motion of the swarm as a whole using swarm-level functions.  The discussion in Section 5 has 

shown that the statistical controllers are capable of being combined with behavior-based 

controllers.  The task arbiter, used in statistical swarm control was determined to be favorable for 

inserting velocity-based behaviors under the motor schema and subsumption architectures.  

Figure 27 summarizes the comparisons of the controllers. 

 
Figure 27: Table of comparison of the controllers 

The combination of two structurally different controllers resulted in a hybrid that is 

incredibly robust, with much better performance than the original controllers.  The remainder of 

this section is devoted to development of this new controller and its capabilities. 
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6.2 Structure of Hybrid Controller  

6.2.1 Hybrid Controller Combining Subsumption with Statistical Method 

 The simulations in this section show how the statistical and subsumption controllers were 

combined to result in a hybrid controller.  The change made to the statistical controller was 

minimal; the task arbiter block was converted to a behavior arbiter.  The behavior arbiter block 

was where the subsumption architecture was embedded.  Figure 28 shows the structure of the 

hybrid controller while Figure 29 shows the internal organization of the behavior arbiter. 

 

 
Figure 28: Hybrid controller block diagram 
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Figure 29: Behavior arbiter block embedded with subsumption 

 The behavior arbiter in Figure 29 shows that, within the block, there was a subsumption 

architecture for each robot.  That architecture controlled the secondary tasks for the robot 

through a decision making process. The subsumption architecture was similar to the one 

developed in the behavior-based section in section 4.3 and had the same behaviors programmed 

for UMCM as seen in Figure 20.  It was ordered as such: the highest behavior in the hierarchy is 

mine avoidance followed by obstacle avoidance, aggregation, separation and then random 

motion.  The stimuli for activating specific behavior in the hierarchy were still based on 

calculations of ranges from the robot to another robot, obstacle or mine.  The robots in the 

simulation were assumed to be able to receive range information to an obstacle similar to real 

implementation using sensors, which would give relevant ranging information when an obstacle 

is discovered.  
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 Additionally, the limit function in the behavior arbiter block effectively prevented all the 

robots from reacting to the environment at the same time, thereby overtaxing the system.  It 

limited the number of robots attempting ‘Random_Search’, the lowest-level behavior in the 

subsumption architecture.  If there were more than three robots with active behaviors, the 

remaining robots only implemented behaviors of higher priority than ‘Random_Search.’  This 

was a simple method of resource planning intended to minimize the impact of random motion on 

obstacle avoidance of other units by not competing for the ‘redundant’ degrees of freedom.  The 

behavior arbiter block sent the expressed behavior for each robot to the null-space projection 

block where calculations were done to move each robot to the best position to satisfy the null-

space and task space variable conditions.   

 

6.2.2 Simulation Results 

  The simulation result for the hybrid controller is shown in Figure 30.  The robots 

performed obstacle, mine and robot avoidance as they moved along the desired trajectory.  The 

coverage of the swarm dramatically improved compared to the simulation results of the 

statistical controller alone.  The improved dispersion of the trajectories taken by each robot is 

evident from the plots.  The randomness was indicative of the inherent decision making 

processes in the controller.  The decisions made by each robot were different based on its 

position and environmental factors present.  The paths around the obstacle were also distinctive 

of the decision process. When a robot was close to an obstacle, it repelled away from it in 

response.  At the next iteration, once again, each robot had to decide on what environmental 

factors were important enough to be considered.  If the robot was not repelled far enough to be 

out of the obstacle or mine range, it continued with obstacle or mine avoidance. However, if the 
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robot escaped the repulsion range of the obstacle or mine, it then decided what other behavior to 

express.  This zigzag motion, known as hysteresis, around the obstacle demonstrated the decision 

process that the robots actively engaged in on an individual level.  

 
Figure 30: Plot of motion of robot swarm with hybrid control 

 
Figure 31: Plot of mean and variance in X and Y with hybrid control 
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 Even though each robot moved in accordance with the environmental changes, the robots 

were still able to maintain the mean and variance of the swarm.  The plots in Figure 31 show the 

plot of the mean and variance in the X and Y directions.  The desired and actual mean and 

variance of the swarm were very similar with minute errors, again due to computation limits.  

This result demonstrated the flexibility of the hybrid controller to have different robot units 

behave in ways to suit the individual’s situation as well as satisfying the swarm’s requirement. 

MATLAB codes can be found in Appendix J and K. 

 

6.2.3 Conclusions  

 From Figures 30 and 31, it was concluded that the hybrid controller performed as 

expected, tracking the desired swarm mean and variance.  While the task-space controller 

satisfied the swarm-level functions, the null-space controller clearly took into account the 

decisions made by individual robots, providing substantially increased unit autonomy and better 

overall area coverage than the statistical controller alone. 

 

6.3 Hybrid Controller with Disturbances 

 Although the hybrid controller worked well for the initial simulation, the performance of 

the controller in more complex situations was still unknown.  The next simulation carried out 

attempted to investigate the behavior of the hybrid controller when the environment became 

more complex.  This was accomplished by the addition of a simple drift term intended to model a 

current field.  The drift in a real underwater environment is highly variable and unpredictable, 

hence any controller to be used in such an environment would require a large degree of 

robustness and flexibility so that it could react and compensate for the external disturbance.  
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Figure 32 shows the addition of an environmental disturbance block to the block diagram for the 

hybrid controller while Figure 33 illustrates the simulated drift currents.  

 
Figure 32: Hybrid controller block diagram with environmental disturbance 

 

 
Figure 33: Vector field depicting a drift current 
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 The non-uniform vector arrows in the above field plot represented the drift current that 

would be expected in an undersea environment.  The individual vector field arrows in the 

simulation denote the direction of the current flowing at a given point.  Unlike a real drift current 

with laminar flow, the direction of flow at different points in the simulated current field varied 

discretely across the space.  This flow field represented an extremely challenging sample so that 

it was possible to test the limits of the capabilities of the swarm.  The simulated current 

(environmental disturbance) was added to the commanded velocity of each robot in the robot 

swarm, based on its location, at each iteration of the simulation.   

 
Figure 34: Plot of swarming robots with hybrid control in a drift current 
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 Figure 34 illustrates the motion of the robots as they move along the same designated 

path as in the simulations from Section 5.6.1.  Different from the initial simulation, it was 

observed that the robots were pushed away in the direction of the current and were not able to 

counteract the effects of the additional drift currents.  Since the flow field moved from left to 

right, the error in the mean and variance in the x direction was higher.  Figure 35 shows how the 

addition of the environmental disturbance affected the mean and variance control. It is worth 

noting that the error seen in these plots could be somewhat reduced by increasing the 

proportional gain.  Even though the robot swarm did not match the desired trajectory exactly, it 

still followed the general form of the desired motion and fulfilled individual task requirements, 

avoiding collisions with surrounding objects and fellow robots.  MATLAB codes can be found in 

Appendix L and M. 

 
Figure 35: Plot of mean and variance of a hybrid controller in a drift current 
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6.3.1 Conclusions  
 
 The swarm was not successful in achieving the desired task function f(q) when faced with 

simulated drift current.  The robots were dispersed outwards, away from the desired mean with 

the actual mean being consistently higher, which was expected based on the drift current.  The 

variance, on the other hand, was very poorly controlled.  The swarm task space controller failed 

to satisfactorily limit the position of the robots based on the variance.  The addition of the 

external stimulus demonstrated a weakness of the controller.  Fortunately, the systems-theoretic 

nature of the primary task controller led to an improved implementation using standard tools of 

feedback control design.  

 

6.4 Hybrid Controller with Vector Compensation 

 Based on the results of Section 6.2, the hybrid controller was altered to take into account 

the environmental errors present. A task-space error integration block was added to the hybrid 

controller to compensate for the error produced between the desired and actual position of the 

mean and variance.  The addition of the integrated error enables the hybrid controller to slowly, 

over time, compensate for the influence of the vector field.  Figure 36 shows where the error 

integration block was added into the hybrid controller.  
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Figure 36: Block diagram of a hybrid controller with vector compensation 

 
Figure 37 demonstrates the effect of including the task-space error integration block, 

which effectively removed the error as seen in Figure 38. Although the paths of the swarm 

elements were not clearly ‘better’ than those of the simulation without the integral term, the 

calculation of the desired and actual mean and variance of the robot swarm in Figure 37 showed 

significant improvement in tracking the desired task function.  The integral control dramatically 

improved the mean tracking characteristics.  The variance control, while not as clean as the 

mean, still effectively improved performance by decreasing the maximum error from the desired 

variances.  A direct comparison of mean-squared error over the trajectory would be misleading, 

as the paths of the units passed through different vector fields throughout the two simulations.   

The difficulty in maintaining the variance of the swarm was due to the effect of the 

varying drift factors.  The vector field was set up such that it changes spatially as the robots 

reach different positions.  Nevertheless, the simulations showed that a hybrid controller with 
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vector compensation works much better since the controllers adapted the motion of each robot to 

suit the objectives of the swarm.  In this case, the swarm level objectives were not compromised 

while the task objectives were being achieved. MATLAB codes can be found in Appendix N and 

O. 

 
Figure 37: Plot of swarming robots with hybrid control and vector compensation 
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Figure 38: Tracking errors for a hybrid controller with vector compensation 

 

6.4.1 Conclusions 
 
 The new hybrid controller showed greater versatility and robustness when it was 

modified to include the task-space error integration block that corrected for the addition of the 

vector fields in the system.  The new hybrid controller therefore has both quantitative and 

qualitative improvements over its parent controllers; it has error rejection for improved 

robustness, decision-making capabilities to give the robots enhanced artificial intelligence for 

potentially better swarm usage, and the ability to regulate swarm-level functions of the platoon 

state.  No other controller has all of these capabilities.  

 



 79 

7. Summary of findings 
 
 This project has effectively and thoroughly studied two specific types of control 

methodologies for a swarm of robots performing underwater UMCM. The behavior-based 

methods showed their strengths and limitations in the earlier sections in the research.  Behavior-

based systems are highly flexible and robust systems, as they need not have a lot of specific 

information about the surroundings they are in.  They only require real-time sensor data to 

trigger individual behaviors.  The motor schema approach was effective for controlling the 

motion of the individual robots within a swarm, but lacked flexibility or any provable stability 

due to its lack of a feedback controller to regulate the performance of the system.  Subsumption, 

on the other hand, showed poor aptitude for swarm control.  On an individual member level, the 

subsumption structure gave each robot a nominal amount of artificial intelligence for it to carry 

out its tasks.  Each robot in the swarm was able to decide what the next behavior or task it should 

perform was, based on environmental information alone.  As a result, each individual robot 

moved in a distinct path, different from its neighboring robots.  Thus, the swarm lacked 

coordination except on the most basic level (collision avoidance).   

 Statistical control was the systems-theoretic controller that was investigated.  Statistical 

control uses classical control methods combined with techniques from redundant manipulator 

control to determine motion commands for each member in a robot swarm.  The original 

statistical controller was able to move the swarm effectively; following a desired task-space 

trajectory defined by swarm mean and swarm variance.   Although the robot swarm avoided 

obstacles while it moved from waypoint to waypoint, it did not show intelligence in deciding 

what path it was taking.  Effectively, the redundancy of the swarm was not well used. 
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 A qualitative comparison of the 3 methods indicates that motor schema showed the least 

potential because it neither produced good provable performance nor demonstrated good robot 

intelligence or a decision-making structure.  Subsumption proved its versatility in handling the 

individual robots through its decision-making capabilities, but showed a weakness in swarm 

coordination.  The statistical controller demonstrated good performance, but lacked the artificial 

intelligence required for the autonomous agents to work well in an underwater environment.  

Therefore, it made sense that a hybrid between the statistical controller and subsumption 

architecture could result in a more robust system that could handle the demands of UMCM.  

 In the process of developing the analysis simulations, an important link was made 

between two methods.  The statistical controller used differential equations to represent 

secondary tasks to be carried out.  The possibility of hybridizing subsumption and statistical 

methods was immediately recognized since the subsumption codes, already written in differential 

equations, could be embedded into the statistical controller codes to generate a hybrid.  Creating 

a hybrid controller meant that the product would be highly versatile in an unknown environment 

while still being able to meet provable performance demands.  Furthermore, the ability to make 

decisions in an unknown environment was seen to be critical for improved performance in real-

world situations.     

 The creation of the hybrid controller proved to be successful.  The resultant controller 

demonstrated the best characteristics of its parent controllers, satisfying the individual behavior-

based tasks as well as regulating swarm level functions while still requiring only minimal 

planning.  The subsumption architecture allowed the swarm to make decisions based on the 

simulated environment and as a result, gave rise to emergent, indeterministic paths.  The 
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statistical controller framework enabled the swarm to track the desired mean and variance 

trajectories.   

A weakness of the hybrid system was observed in the testing phase, when drift factors 

were added into the simulation.  Under these disturbances, the hybrid controller was incapable of 

regulating swarm mean and variance, although the system remained stable and still carried out 

the mission.   

To compensate for the difficulty of the hybrid controller with regards to drift vectors (and 

any other velocity disturbances), a task-space error integration block was added to the hybrid 

controller.  The compensated system was able to overcome the effects of the external drift 

factors.   

 In closing, this project involved the investigation of three distinct techniques for swarm 

control of robots in the UMCM domain.  The simulations shown in this research demonstrated 

numerous features, including the strengths and weaknesses of the various swarm control 

techniques. A hybrid controller with qualitative and quantitative improvements over the parent 

controllers was also created.  The investigative portion of this project should serve as a good 

overview for future work on a real-world implementation of swarm controllers for underwater, 

surface or land multi-agent controls.  Further, the new hybrid controller represents an important 

contribution to the field of robot swarm control, as it combines systems-theoretic and behavior-

based methods into a cohesive framework.   
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% Appendix A 
% Yong Chye Tan                                      
% Trident Project SImulation1 
% Simulation of 1 robot in a 2-D field avoiding obstacles 
 
function ldot = oas(t,p) 
global Obst 
 
Katt = 1;   %attractive gain 
Krep = 1; %repulsive gain 
Xobst = 2;   %x coodinate of obstacle 
Yobst = 3 ;    %y coodinate of obstacle 
r=0.1;          % sensing radius of holonomic robot 
R= 0.5;        %magnitude of radius of obstacle 
rho = R+ 0.5;     %maginitude of radius of influence of obstacle 
Xt= 3;       %x coodinate of target 
Yt=5;          %y coodinate of target 
x=p(1);     %x coordinate of holonomic robot 
y=p(2);     %y coordinate of holonomic robot 
 
plot(Xobst, Yobst,'*');     % plot center of obstacle 
theta_att= atan2(Yt -y, Xt-x); % attractive angle 
xatt = Xt- x; ; % x dist of attractive vector 
yatt = Yt - y;  % y dist of attractive vector 
 
L = [xatt ; yatt];  % vector to show length of attractive vector 
Mag_L= sqrt(L'*L);  %magnitude of length 
attctrl = Katt*[(Mag_L)*cos(theta_att) ;(Mag_L)*sin(theta_att)];   %attractive 
control, potential 
 
%repulsive control 
theta_rep= atan2(y-Yobst, x-Xobst);   %angle of repulsion 
xdist = x-Xobst-R*cos(theta_rep) ;   %x distance of vector 
ydist = y-Yobst-R*sin(theta_rep);  %y distance of vector 
Length = [xdist ; ydist];   % vector to delineate length 
Mag_Leng=sqrt(Length'*Length);  %magnitude of Length 
 
if ( Mag_Leng<(rho-R)) 
 
repctrl=Krep*[(1/Mag_Leng)*cos(theta_rep)-(1/(rho-R))*cos(theta_rep);  
         (1/Mag_Leng)*sin(theta_rep)-(1/(rho-R))*sin(theta_rep)] ;  % repulsion 
control. potential 
 
 else  
     repctrl=[0;0]; 
      
 end  
 
ldot = repctrl + attctrl;   %controller    
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% Appendix B 
% Yong Tan 
% Trident Scholar Project 
% distcalc to be used to find distance from each other  
function ldot= distcalc(t,p) 
 
 
[n,m]=size(p); %converting the column vector into a 3*2 vector  
count=n/2; 
r=zeros(count,2); 
A=0; 
for i=1:n           %conversion of a 6 by 1 column vector into a 3 by 2  
    if rem(i,2)==0  %if i is even move to 2nd column 
          y=i/2;,   
        r(y,2)=p(i,1); 
    else            %if i is odd, move to 1st column 
        y=(i+1)/2; 
      r(y,1)=p(i,1); 
    end 
    
end  
 
Katt=1; % attractive constant  
 
Krep=10; % repulsion constant  
 
% find centroid of all 3 robots 
[n, m]=size(r); % size of robo vector 
A=sum(r,1);     % sum of all x,y coordinates   
Xc= A(1,1)/n;     % x-coordinate of centroid of all robots    
Yc=A(1,2)/n;        % y-coordinate of centroid of all robots 
plot(Xc, Yc,'*'); 
hold on; 
 
%Attractive control 
att=zeros(n,m);  %create matrix 
 
for i=1:n 
    att(i,1)=Xc-r(i,1);    % find x attractive potential 
    att(i,2)=Yc-r(i,2);     % find y attractive potential 
end 
 
attctrl= Katt* att; 
 
rep=zeros(n,2); 
qa=zeros(1,2); 
qb=zeros(1,2); 
 
for i=1:(n-1)       % Matrix to write the repulsive potential 
    for j=2:n       % by reducing the number of times each point is added, we run 
the matrix 1/2 the required times 
       if i==j      % if i=j, same point, thus discard 
       else 
           Xa=r(i,1);    
            Ya=r(i,2); 
            Xb=r(j,1); 
            Yb=r(j,2);      
            
           dist_ab=sqrt(((Xa-Xb)^2) +((Ya-Yb)^2)); 
       
           theta_ba=atan2(Ya-Yb, Xa-Xb); 
           qa=[(1/dist_ab)*cos(theta_ba),(1/dist_ab)*sin(theta_ba)]; 
           rep(i,:)=rep(i,:)+qa; 
           
           qb= [(1/dist_ab)*cos(theta_ba+ pi),(1/dist_ab)*sin(theta_ba+pi)]; 
           rep(j,:)=rep(j,:)+qb; 
            
       end 

   end    
end 
 
repctrl= Krep*rep; 
 
q=zeros(n,m); 
qspec=zeros((n*m),1); 
 
 q = attctrl + repctrl;   %sum of attractive and repulsive controller 
 counter=0; 
    for i=1:n 
        for j=1:m 
            counter=counter+1; 
            qspec(counter,1)=q(i,j); 
             
        end 
    end 
     
 ldot=qspec; 
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% Appendix C 
% Yong Tan 
% Trident Scholar Project 
 
% distcalc to be used to find distance from each other  
function ldot= multiobst(t,p) 
%list constants 
global obst 
 
Katt=1; % attractive constant  
Krep=5; % repulsion constant 
Kattarget=5;    % attractive constant to target 
Kreptar=15;     % repulsion constant from obstacle 
Xt=20;   %x-coordinate of target 
Yt=20;   %y-coordinate of target 
 
R=0.5;  %radius of obstacle 
rho=R+1;  %radius of influence 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
[n,m]=size(p); %converting the column vector into a 3*2 vector  
count=n/2; 
r=zeros(count,2); 
A=0; 
for i=1:n           %conversion of a 6 by 1 column vector into a 3 by 2  
    if rem(i,2)==0  %if i is even move to 2nd column 
          y=i/2;,   
        r(y,2)=p(i,1); 
    else            %if i is odd, move to 1st column 
        y=(i+1)/2; 
      r(y,1)=p(i,1); 
    end 
end  
 
% find centroid of all 3 robots 
[n, m]=size(r); % size of robo vector 
A=sum(r,1);     % sum of all x,y coordinates   
Xc= A(1,1)/n;     % x-coordinate of centroid of all robots    
Yc=A(1,2)/n;        % y-coordinate of centroid of all robots 
%plot(Xc, Yc,'*'); 
%hold on; 
%Attractive control 
att=zeros(n,m);  %create matrix 
 
for i=1:n 
    att(i,1)=Xc-r(i,1);    % find x attractive potential 
    att(i,2)=Yc-r(i,2);     % find y attractive potential 
end 
 
attctrl= Katt* att; 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% attractive potential of individual points to target 
attargetctrl=zeros(n,m); 
 
for i=1:n 
    Xattar=(Xt-r(i,1)); 
    Yattar=(Yt-r(i,2)); 
    theta_target = atan2(Yattar,Xattar); % angle of attracion to target 
     
    l=[Xattar ; Yattar];  % vectorto show length of attractive vector to target 
    Mag_l=sqrt(l'*l);   %magnitude of length 
     
    attargetctrl(i,1)= (Mag_l)*cos(theta_target); 
    attargetctrl(i,2)= (Mag_l)*sin(theta_target);    
end 
attargetctrl=Kattarget*attargetctrl; 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%repulsive potential away from each other 
rep=zeros(n,2); 

qa=zeros(1,2); 
qb=zeros(1,2); 
 
for i=1:(n-1)       % Matrix to write the repulsive potential 
    for j=2:n       % by reducing the number of times each point is added, we run 
the matrix 1/2 the required times 
       if i==j      % if i=j, same point, thus discard 
       else 
           Xa=r(i,1);    
            Ya=r(i,2); 
            Xb=r(j,1); 
            Yb=r(j,2);      
           dist_ab=sqrt(((Xa-Xb)^2) +((Ya-Yb)^2));  % distance from each point    
           theta_ba=atan2(Ya-Yb, Xa-Xb); 
           qa=[(1/dist_ab)*cos(theta_ba),(1/dist_ab)*sin(theta_ba)]; 
           rep(i,:)=rep(i,:)+qa; 
           
           qb= [(1/dist_ab)*cos(theta_ba+ pi),(1/dist_ab)*sin(theta_ba+pi)]; 
           rep(j,:)=rep(j,:)+qb; 
       end 
   end    
end 
 
repctrl= Krep*rep; 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%repulsive control away multiple obstaclesfrom the obstacle 
reptarget=zeros(n,m); 
 
totalrepobst=zeros(n,m); 
[w,v]=size(obst); 
 
for k=1:w 
    for i=1:n     
        theta_obst = atan2(r(i,2)-obst(k,2),r(i,1)-obst(k,1)); % angle of repulsion 
form obstacle    
        Xdist=(r(i,1)-obst(k,1)-R*cos(theta_obst)); 
        Ydist=(r(i,2)-obst(k,2)-R*sin(theta_obst)); 
     
        L=[Xdist ; Ydist];  % vectorto show length of repulsion vector to obstacle 
     
        Mag_L=sqrt(L'*L);   %magnitude of length 
     
        if (Mag_L<(rho-R)) 
            repobst(i,1)= ((1/Mag_L)*cos(theta_obst))-((1/(rho-R))*cos(theta_obst)); 
            repobst(i,2)= ((1/Mag_L)*sin(theta_obst))-((1/(rho-R))*sin(theta_obst)); 
        else 
            repobst(i,1)= 0; 
            repobst(i,2)=0; 
        end  
    end 
totalrepobst=totalrepobst+repobst;     
end    
reptarget=Kreptar*totalrepobst; 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
q=zeros(n,m); 
qspec=zeros((n*m),1); 
 
 q = attctrl + repctrl + attargetctrl + reptarget;   %sum of attractive and 
repulsive controller 
 counter=0; 
    for i=1:n 
        for j=1:m 
            counter=counter+1; 
            qspec(counter,1)=q(i,j);   
        end 
    end 
     
 ldot=qspec; 
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% Appendix D 
%Yong Tan 
%Trident project 
%behavior based: program to run simulation with multiple robots  
 
global obst% list obstacles as a global variable 
 
R=0.5; 
rho=1+R; 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%create obstacles insimulation 
 
obst=obst1;   %using preset data points as references for sqobst 
robot=[0 0 6 0 3 4 9 7 6 5 0 1]'; 
[t,p]=ode45('multiobst', [0,60],robot);    %run program for specified robot points 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
[n,m]=size(robot); %converting the column vector into a 3*2 vector  
count=n/2; 
newrobot=zeros(count,2); 
A=0; 
for i=1:n           %conversion of a 6 by 1 column vector into a 3 by 2  
    if rem(i,2)==0 %if i is even move to 2nd column 
          y=i/2;,   
        newrobot(y,2)=robot(i,1); 
    else            %if i is odd, move to 1st column 
        y=(i+1)/2; 
      newrobot(y,1)=robot(i,1); 
    end 
end  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
[w,m]=size(newrobot); 
 
for i=1:w 
    plot(newrobot(i,1),newrobot(i,2),'+');   
end 
  
for i=1:n 
    if rem(i,2)==0   
         
    else   
        next=i+1; 
        plot(p(:,i),p(:,next)) ; 
    end 
end 
 
title( '3 robots movig and avoiding obstacle'); 
 xlabel('x-coodinates'); 
 ylabel('y-coodinates'); 
 grid; 
  
 figure(2); 
 %end 
 
 plot3(t,p(:,1),p(:,2),':'); 
 hold on; 
 plot3(t,p(:,3),p(:,4),'p--'); 
 plot3(t,p(:,5),p(:,6),'o-'); 
 plot3(t,p(:,7),p(:,8),'y-.'); 
 plot3(t,p(:,9),p(:,10),'m-'); 
 plot3(t,p(:,11),p(:,12),'g-*'); 
 title(' individual tracks taken by each robot'); 
 xlabel('time-coodinates'); 
 ylabel('x-coodinates'); 
 zlabel('y-coodinates'); 
 grid; 

 legend('Track of 1st robot','Track of 2nd robot','Track of 3rd robot','Track of 4th 
robot','Track of 5th robot','Track of 6th robot') 
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%Appendix E1 
% Yong Tan 
% Trident Scholar Project 
 
function ob=obst() 
%  This file sets up vetices 
%  for a number of obstacles 
%  The C-space equivalent is 
%  drawn at runtime. 
global NUM 
 
 
ans = input('Do you wish to generate new obstacles (y/n)? ', 's'); 
if (ans == 'y') 
   NUM = []; 
   N = input('How many obstacles do you wish to generate? '); 
   figure(1); 
   clf; 
   axis([0 20 0 20]); 
   hold; 
   OBST = []; 
   for i = 1:N 
      temp = ['Obstacle #', num2str(i), ':  Click on each vertex in CLOCKWISE order. 
Double-click final vertex.']; 
      disp(temp); 
      input('Press ENTER when ready'); 
            
      [xo, yo] = getpts; 
      [n, m] = size(OBST); 
      xo = [xo; xo(1)]; 
      yo = [yo; yo(1)]; 
      fill(xo, yo, 'r'); 
      l_new = length(xo); 
      if (l_new < 3) 
         error('An obstacle must have at least 3 vertices'); 
      end 
      NUM(i) = l_new - 1; 
      if (m < l_new)&(m > 0) 
         OBST = [OBST, zeros(n, l_new - m)]; 
      end 
      if (m > l_new) 
         xo = [xo; zeros(m-l_new, 1)]; 
         yo = [yo; zeros(m-l_new, 1)]; 
      end 
      OBST = [OBST; xo'; yo']; 
   end 
else 
   ans = input('Choose: 1 Last set of obstacles, 2 Standard: '); 
   if (ans == 2) 
  NUM = [4 3 3];  % Number of vertices for each   
     obstacle 
 
  O1 = [1 1;      %  that is an 'oh1', not a   
       'zero1' 
     1.1 2; 
     2 2.1; 
     2.1 1.1;]; 
 
  O1 = [O1; O1(1, :)]; 
 
  O2 = [4 4; 
     6 2; 
     4.1 2.1]; 
 
  O2 = [O2; O2(1, :)]; 
  O3 = [6 6; 
     8 6.1; 
     8.1 4]; 

  O3 = [O3; O3(1, :)]; 
  OBST = [O1'; O2' [0 0]'; O3' [0 0]'] 
 end 
 figure(1); 
 clf; 
   axis([0 20 0 20]); 
 hold; 
end 
ob=OBST; 
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%Appendix E2 
%Yong Tan 
%Trident project 
%behavior based: program to run simulation with multiple robots  
 
global obs% list obstacles as a global variable 
global target 
global NUM 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%create obstacles in simulation 
 
obs=obst;   %create obstacles in plot 
[row,col]=size(obs); 
 
 %matrix to store command positions 
pts=inputpoints; %Get points 
[roww,coll]=size(pts); 
robot=zeros((roww-2),1); 
 
for i=1:(roww-2) 
     robot(i,1)=pts(i,1);      
end     
target=zeros(1,2); 
target(1,1)=pts(roww-1,1); 
target(1,2)=pts(roww,1); 
 
[t,p]=ode45('avoidobst', [0,60],robot); %run program for specified robot points 
     
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
[n,m]=size(robot); %converting the column vector into a 3*2 vector  
count=n/2; 
newrobot=zeros(count,2); 
 
for i=1:n           %conversion of a 6 by 1 column vector into a 3 by 2  
    if rem(i,2)==0 %if i is even move to 2nd column 
          y=i/2;  
        newrobot(y,2)=robot(i,1); 
    else            %if i is odd, move to 1st column 
        y=(i+1)/2; 
      newrobot(y,1)=robot(i,1); 
    end 
end  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%plotting position of the new robots 
[w,m]=size(newrobot); 
 
for i=1:w 
    plot(newrobot(i,1),newrobot(i,2),'+');   
end 
% plotting positions of the paths 
for i=1:n 
    if rem(i,2)==0   
    else   
        next=i+1; 
        plot(p(:,i),p(:,next)) ; 
    end 
end 
 
title( '3 robots moving and avoiding new obstacle'); 
 xlabel('x-coodinates'); 
 ylabel('y-coodinates'); 
 grid; 
  
[row,col]=size(p); 
 
robot=p(row,:)';  

%end 
 
 figure(2); 
 
 plot3(t,p(:,1),p(:,2),'r:'); 
 hold on; 
 plot3(t,p(:,3),p(:,4),'g--'); 
 plot3(t,p(:,5),p(:,6),'c-'); 
 title(' individual tracks taken by each robot in new obstacle'); 
 xlabel('time-coodinates'); 
 ylabel('x-coodinates'); 
 zlabel('y-coodinates'); 
 grid; 
 legend('Track of 1st robot','Track of 2nd robot','Track of 3rd robot') 
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%Appendix E3 
% Yong Tan 
% Trident Scholar Project 
%edited from Prof Bishop 
 
%  This function takes a robot position (x,y) 
%  and a vector of obstacle vertices OBST as 
%  well as a vector NUM that contains the number 
%  of vertices per obstacle.  It returns the 
%  repulsive force vector Frep 
% No obstacle should have two vertices on the 
% a horizontal line. 
 
function Frep = repulse(x, y, OBST, NUM) 
 
eta = 0.5;          % Coefficient for repulsive potential 
rho = 1.5;   % Maximum distance for repulsive field of 
obstacles 
min_dist = 100000;    % initialize to 'infinity'  
for i = 1:length(NUM) 
   for j = 1:NUM(i) 
         x1 = OBST(2*i-1, j);              % current vertex x 
         x2 = OBST(2*i-1, j+1);            % next vertex x 
         y1 = OBST(2*i, j);                % current vertex y 
         y2 = OBST(2*i, j+1);              % next vertex y 
         if (x2 ~= x1) 
            slope = (y2-y1)/(x2-x1);          % side slope 
         else 
            slope = Inf; 
        end 
         y_inter = y1 - x1*slope;          % side y-intercept 
         A = slope; 
         B = -1; 
         C = y_inter; 
         dist = abs((A*x + B*y + C)/sqrt(A*A + B*B));    % distance from robot (x,y) 
to side 
         if (dist < min_dist) 
            angle_edge = atan2(y2 - y1, x2 - x1);        % angle of edge 
            angle_test = angle_edge + pi/2;              % angle of force vector 
            %pt = [x1 + cos(angle_test); y1 + sin(angle_test)];  %  
            pob = [x + cos(angle_test + pi)*dist; 
                   y + sin(angle_test + pi)*dist;];   % closest point on extended 
edge 
            d1 = norm([pob(1) - x1; pob(2) - y1]);    % distance from extended edge 
intercept 
                                                      % to current vertex 
            d2 = norm([pob(1) - x2; pob(2) - y2]);    % distance from extended edge 
intercept 
                                                      % to current vertex 
            l = norm([x1 - x2; y1 - y2]);             % distance from vertex to 
vertex 
            if (max([d1, d2]) >  l)                   % extended edge intercept NOT 
between 
                                                      % vertices... do nothing 
            else 
               min_dist = dist;                       % closest point is between 
vertices 
               angle_push = angle_test;               % push away from edge 
            end 
         end 
         dist = norm([x - x1, y - y1]);               % distance to vertex 
         if (dist < min_dist)                         % closest point is at vertex 
            min_dist = dist; 
            angle_push = atan2(y - y1, x - x1);       % push away from vertex 
         end 
      end 
   end 
    

   if (min_dist < rho)                               % inside radius of influence 
      Frep = [cos(angle_push) sin(angle_push)]*eta*(1/(min_dist-0.25) - 1/(rho-
0.25))*1/(min_dist^2); 
   else 
      Frep = [0 0];                                      % outside radius of 
influence 
   end 
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% Appendix F 
%Yong Tan 
%Trident project 
%behavior based: program to run simulation with multiple robots  
 
global OBST% list obstacles as a global variable 
global target 
global NUM 
global MINES 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%create obstacles in simulation 
 
obstone;%create obstacles in plot 
MINES=mines; 
OBST=ob; 
[row,col]=size(OBST); 
 
 %matrix to store command positions 
pts=inputpoints; %Get points 
[row,col]=size(pts); 
robots=zeros((row-2),1); 
 
for i=1:(row-2) 
     robot(i,1)=pts(i,1); 
      
 end     
target=zeros(1,2); 
target(1,1)=pts(row-1,1); 
target(1,2)=pts(row,1); 
 
[t,p]=ode45('findmine', [0,50],robot); %run program for specified robot points 
     
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
[n,m]=size(robot); %converting the column vector into a 3*2 vector  
count=n/2; 
newrobot=zeros(count,2); 
 
for i=1:n           %conversion of a 6 by 1 column vector into a 3 by 2  
    if rem(i,2)==0 %if i is even move to 2nd column 
          y=i/2;  
        newrobot(y,2)=robot(i,1); 
    else            %if i is odd, move to 1st column 
        y=(i+1)/2; 
      newrobot(y,1)=robot(i,1); 
    end 
end  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
[w,m]=size(newrobot); 
 
for i=1:w 
    plot(newrobot(i,1),newrobot(i,2),'+');   
end 
for i=1:n 
    if rem(i,2)==0   
    else   
        next=i+1; 
        plot(p(:,i),p(:,next)) ; 
    end 
end 
 
title( '3 robots movig and avoiding obstacle'); 
 xlabel('x-coodinates'); 
 ylabel('y-coodinates'); 
 
  
[row,col]=size(p); 

 
robot=p(row,:)';  
%end 
 
%  figure(2); 
%  
%  plot3(t,p(:,1),p(:,2),':'); 
%  hold on; 
%  plot3(t,p(:,3),p(:,4),'--'); 
%  plot3(t,p(:,5),p(:,6),'-'); 
 %title(' individual tracks taken by each robot'); 
 %xlabel('time-coodinates'); 
 %ylabel('x-coodinates'); 
 %zlabel('y-coodinates'); 
 %grid; 
 %legend('Track of 1st robot','Track of 2nd robot','Track of 3rd robot') 
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%Appendix G 
% Yong Tan 
% Trident Scholar Project 
 
% This program is used to determine how the subsumption architecture affects the 
movement of the  
% robot since it is rule based and subjected to its location within the hierachy. 
 
function pdot= subsumption_wp(t,p) 
%list constants 
 
global T 
global brownian 
global leg 
global OBST 
global ROBOT 
global INITIAL_ROBOT 
global WAYPTS 
global NUM 
global MINES 
global counter 
 
%initiliase gains  
Katt=2; % attractive constant  
Krep=5; % repulsion constant 
Kreptar=15;     % repulsion constant from obstacle 
 
R=0.3;  %radius of obstacle 
rl=0.2;  %sensing radius 
rho=R+0.2;  %radius of influence of robot 
 
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  
[n,m]=size(p); %converting the column vector into a 3*2 vector  
count=n/2; 
ROBOT=zeros(count,2); 
for i=1:n           %conversion of a 6 by 1 column vector into a 3 by 2  
    if rem(i,2)==0  %if i is even move to 2nd column 
        y=i/2;   
        ROBOT(y,2)=p(i,1); 
    else            %if i is odd, move to 1st column 
        y=(i+1)/2; 
        ROBOT(y,1)=p(i,1); 
    end 
end  
 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  
% begin subsumption architecture,  
% highest order, avoid obstacle; detect mine; gathering; random motion 
 
% matrix to store resultant vector  
resultant=zeros(size(ROBOT)); 
 
 
%1. find closest mines 
Notarget=disttarget(MINES,ROBOT); 
 
%2. find shortest distance 
minobstdist=calculatemindist(OBST,ROBOT,NUM); 
Frep=[]; 
 
%3. find separation of robots 
[n, m]=size(ROBOT);  
 robodist=robotdist(ROBOT); 
 close_d=min(robodist); 
count=0; 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 %****************subsumption part of codes******************************* 
for i=1:n 
    position=0; 

    % for every robot calculate closest mine  
    %   1. HIghest order: Avoid mines, tag them and store positions 
    if (Notarget(i,1)<=0.3) 
        % repulse away from target and change them into a potential 
            position=(Notarget(i,2)); 
             %find the index of the closest mine 
            counter=counter+1; 
            if (counter>5); 
                 
                plot(MINES(position,1),MINES(position,2),'gd'); 
                counter=0; 
            else 
            end 
            [rows,cols]=size(MINES);    % finding size of mine 
            totalrep=zeros(n, m); 
            repmine=zeros(n, m);   
             
            theta_mine = atan2(ROBOT(i,2)-MINES(position,2),ROBOT(i,1)-
MINES(position,1)); % angle of repulsion form obstacle 
             
            Xdist=(ROBOT(i,1)-MINES(position,1)-rl*cos(theta_mine)); 
            Ydist=(ROBOT(i,2)-MINES(position,2)-rl*sin(theta_mine)); 
             
            % vectorto show length of repulsion vector to obstacle 
            Mag_L=norm([Xdist ; Ydist]); %normalize vector for magnitude of length 
             
            repmine(i,1)= ((1/Mag_L)*cos(theta_mine))-((1/(rho-
rl))*cos(theta_mine)); 
            repmine(i,2)= ((1/Mag_L)*sin(theta_mine))-((1/(rho-
rl))*sin(theta_mine)); 
             
            random(i,:)= randn(1,2); 
            totalrep(i,:)=Kreptar*(repmine(i,:)+ random(i,:)); 
            resultant(i,:)=totalrep(i,:); 
         
      else 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% #2 AVoid closest obstacles  
            if (minobstdist<0.8) 
         
             %repulsive control away from  multiple obstacles 
             temp1=ROBOT(i,1);   %  set first x coor of robot to temp1  
             temp2=ROBOT(i,2);    %  set first y coor of robot to temp2 
             Frep(i,:) = repulse(temp1, temp2, OBST, NUM);    % find repulsive force 
away from obstacles 
              
             %random_var=0.3*randn(1,2);  %add random variable 
             Repelobst(i,:)=Frep(i,:);%+brownian;  %create final  vector 
             resultant(i,:)=Repelobst(i,:);      % store in new vector 
              
            % disp('Avoid') 
         
             else         
     
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
                if (close_d>3)  
                     % if the distance between robots were greater than 5,less than 
20, 
                     %ignore, computational error 
                     resultant=zeros(n,m); 
                        
                 elseif ((close_d>1) & (close_d<=2)) 
                     % find centroid of all 3 robots 
                     [n, m]=size(ROBOT); % size of robo vector 
                     A=sum(ROBOT,1);     % sum of all x,y coordinates   
                     Xc= A(1,1)/n;     % x-coordinate of centroid of all robots    
                     Yc=A(1,2)/n;        % y-coordinate of centroid of all robots 
                      



 95 

                     %Attractive control 
                     att=zeros(n,m);  %create matrix 
                     Mag_change=norm([Xc-ROBOT(i,1),Yc-ROBOT(i,2)]); 
                     theta_att=atan2(Yc-ROBOT(i,2),Xc-ROBOT(i,1)); 
                      
                     att(i,1)=Mag_change*cos(theta_att);    % find x attractive 
potential 
                     att(i,2)=Mag_change*sin(theta_att);     % find y attractive 
potential 
                      
                     attctrl(i,:)= Katt* att(i,:);         % attractive potential 
towards each other 
                     resultant(i,:)=attctrl(i,:);          % assigning matix to 
resultant  
             %       disp('gather') 
                      
                 elseif ((close_d<0.5) & (close_d>0)) 
                     %repulsive potential away from each other 
                     rep=zeros(n,2); 
                     qa=[];  %value to store repulsive vector to be added in one 
direction 
                     qb=[];  %value to store repulsive vector to be added in other 
direction(+pi) 
                     if (i<= (n-1))      % Matrix to write the repulsive potential 
                         for k=2:n       % by reducing the number of times each 
point is added, we run the matrix 1/2 the required times 
                             if i==k      % if i=j, same point, thus discard 
                             else 
                                 Xa=ROBOT(i,1);    
                                 Ya=ROBOT(i,2); 
                                 Xb=ROBOT(k,1); 
                                 Yb=ROBOT(k,2);      
                                  
                                 dist_ab=sqrt(((Xa-Xb)^2) +((Ya-Yb)^2));  % distance 
from each point 
                                  
                                 theta_ba=atan2(Ya-Yb, Xa-Xb); 
                                 
qa=[(1/dist_ab)*cos(theta_ba),(1/dist_ab)*sin(theta_ba)];  
                                 rep(i,:)=rep(i,:)+qa; % vector from one robot to 
another 
                                  
                                 qb= [(1/dist_ab)*cos(theta_ba+ 
pi),(1/dist_ab)*sin(theta_ba+pi)]; 
                                 rep(k,:)=rep(k,:)+qb;    % reciprocal vector from 
one robot to another 
                             end 
                         end    
                     else     
                     end    
                     repctrl(i,:)= Krep*rep(i,:); 
                     resultant(i,:)=repctrl(i,:);  
              %       disp('spread') 
                      
        %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
        %successful code for random motion 
        %Create random points 
                elseif( (close_d>0.3) & (close_d<1.0)) 
                    %separate x,y components into different matrices 
                     [roww,col]=size(WAYPTS) ; 
                      brownian = randn(1,2); 
                       
                     x_d = WAYPTS(leg, 1); 
                     y_d = WAYPTS(leg, 2); 
                      
                     [n,m]=size(ROBOT); 
                      
                     att_d=zeros(1,m); 

                     x = ROBOT(i,1);        
                     y = ROBOT(i,2); 
                      
                     att_d(i,:) = [x_d - x, y_d - y]; % attractive vector towards 
desired position 
                     magnitude=sqrt((x_d - x)^2+ (y_d - y)^2); 
                     if (magnitude > 1) 
                         att_d(i,:) = (att_d(i,:)+ brownian)/magnitude;   % 
normalize vector, <1 
                     else 
                         if (magnitude < 0.1) % if position is <0.1 to desired 
waypoint 
                             if (leg < length(WAYPTS)) 
                                leg = leg + 1  % change waypoint 
                            else 
                                leg = leg; 
                            end 
                        end 
                     end 
                    
                     if (t > T) 
                         T = T + 0.5; 
                         resultant(i,:) = att_d(i,:) + 3*brownian; 
                     else 
                        resultant(i,:) = att_d(i,:); 
                     end 
                     resultant; 
               %     disp('brownian') 
                 end 
             end 
         end 
     end 
      
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
[n,m]=size(resultant);% convert the n,m matrix = n*m,1 matrix 
counter=0; 
qspec=zeros(n*m,1); 
 
for i=1:n 
    for j=1:m 
        counter=counter+1; 
        qspec(counter,1)=resultant(i,j); 
    end 
end 
pdot=qspec; 
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% Appendix H  
%Yong Tan 
% Trident Scholar Project 
% This file runs the program, improvedstat, to demonstrate the effects of 6 robots 
% performing obstace avoidance while maintaining the mean and variance of the swarm 
global mudx vardx mudxf vardxf % global variables of changes in mean and variance of 
x 
global mudy vardy mudyf vardyf % global variables of changes in mean and variance of 
y 
global Km Kv Ka % motion, velocity and acceleration constants 
global R RAD RRAD Radmine% xoffset, yoffset, mean offset,  
global Xobst Yobst Cx Cy Cmx Cmy num  
global leg tf Xmine Ymine 
global traj_hist 
 
traj_hist = []; 
num=6;             % number of robots 
R = 1;           % Radius of obstacle 
mudxf = [2 12 12]; 
mudyf = [10 10 0]; 
vardxf = [5 3 5]; 
vardyf = [3 5 3]; 
Km = 3;  % 3     motion constant 
Kv = 3;  % 3     velocity constant 
Ka = 5; % 1         % acceleration constant 
RAD = 2;            % minimum separtion distance between robots 
RRAD = 0.5;  % 1      % minimum distance between individual robots to obstacle 
Radmine=0.3; 
record = 0; 
Xobst= [3 6 10 ];   %6 
Yobst = [4 8 4 ];   %8 
Xmine = [ 7 10]; 
Ymine = [ 10 6]; 
leg=1; 
 
tf =18; % final time in sec 
tspan = [0 tf]; % time span from 0-20 s 
 
q0=[0 1 2 3 4 3.8105 0 2 0 2 1 2.5]; 
  
mudx = mean(q0(1:num)); 
mudy = mean(q0(num+1: 2*num)); 
vardx = var(q0(1:num)); 
vardy = var(q0(num+1: 2*num)); 
 
for zz = 1 : 3 
    tfl = tf/3 + tf/3*(zz-1); 
    til = tfl - tf/3; 
    %polynomial interpolation 
    if (zz > 1) 
        mudx = mudxf(zz-1); 
        mudy = mudyf(zz-1); 
        vardx = vardxf(zz-1); 
        vardy = vardyf(zz-1); 
    end 
    Cx = [til^3 til^2 til 1; 3*til^2 2*til 1 0; tfl^3 tfl^2 tfl 1; 3*tfl^2 2*tfl 1 
0]^(-1)*[vardx; 0; vardxf(zz); 0]; 
    Cy = [til^3 til^2 til 1; 3*til^2 2*til 1 0; tfl^3 tfl^2 tfl 1; 3*tfl^2 2*tfl 1 
0]^(-1)*[vardy; 0; vardyf(zz); 0]; 
     
    Cmx = [til^3 til^2 til 1; 3*til^2 2*til 1 0; tfl^3 tfl^2 tfl 1; 3*tfl^2 2*tfl 1 
0]^(-1)*[mudx; 0; mudxf(zz); 0]; 
    Cmy = [til^3 til^2 til 1; 3*til^2 2*til 1 0; tfl^3 tfl^2 tfl 1; 3*tfl^2 2*tfl 1 
0]^(-1)*[mudy; 0; mudyf(zz); 0]; 
    traj_hist = [traj_hist; Cx' Cy' Cmx' Cmy' tfl]; 
end 
 
options = odeset('RelTol', 1e-12, 'AbsTol', 1e-10*[ones( 2*num,1)]'); 

[t, q] = ode45('improvedstat', tspan, q0); % calculates the x, y position based on 
time 
 
figure(1); 
clf(1); 
    nextT = 0; 
     axis([-8 18 -3 13]); 
    axis('manual'); 
    xlabel('X (m)'); 
    ylabel('Y (m)'); 
    title('Motion of Platoon Units with the Statistical Controller'); 
    hold; 
    theta = 0:0.01:2*pi; 
    [a,b]=size ( Xobst);   
    for (i=1:b) 
        obst = [R*cos(theta)+Xobst(i); R*sin(theta)+Yobst(i)]; % showing the 
obstacle 
        plot(obst(1, :), obst(2, :)); 
    end 
     [a,c]=size (Xmine); 
    for (i=1:c) 
        mine = [Radmine*cos(theta)+Xmine(i); Radmine*sin(theta)+Ymine(i)]; % showing 
the obstacle 
        plot(mine(1, :), mine(2, :)); 
    end 
    robot = [-0.03 -0.03; 0.03 -0.03; 0.03 0.03; -0.03 0.03];% using little squares 
to represent the  robots 
    clear M; 
   col = ['g', 'r', 'b', 'c', 'm', 'y']; 
    for (i = 1:length(t)) 
        if t(i) >= nextT     % everytime, T, draw and color robot..  
            for (j = 1:num) 
                fill(robot(:, 1)+q(i, j), robot(:, 2)+q(i, j+num), col(j)); % fill 
in shape and color of the simulated robots.  
            end 
            nextT = nextT + 0.05; % at next time T  
        end 
        M(i) = getframe; 
        % pause 
    end 
     axis('equal'); 
    axis([min(min(q(:, 1:6)))-1, max(max(q(:,1:6)))+1,min(min(q(:, 7:12)))-1, 
max(max(q(:,7:12)))+1]); 
    hold off; 
     
    %labelling the plot 
    for h=1:(length(Xobst)) 
        gtext(['Obstacle #',num2str(h)]); 
    end     
    for p=1:(length(Xmine)) 
        gtext(['Mine #',num2str(p)]); 
    end     
    for j=1:num 
        gtext(['Unit #',num2str(j)]); 
    end 
    
figure(2) 
clf(2); 
for i = 1:6 
    subplot(3,2,i); 
    axis([0 15 0 15]); 
    axis('manual'); 
    title(['Unit #', num2str(i)]); 
    ylabel('Y (m)'); 
    if i>4 
    xlabel('X (m)'); 
    end 
    hold 
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    plot(q(:, 1+(i-1)), q(:, 1+num+(i-1))); % plot individual paths 
    [a,b]=size ( Xobst); %plot individual obstacles 
    theta = 0:0.01:2*pi; 
    for (i=1:b) 
        obst = [R*cos(theta)+Xobst(i); R*sin(theta)+Yobst(i)]; % showing the 
obstacle 
        plot(obst(1, :), obst(2, :)); 
    end 
    [c,d]=size ( Xmine); % plot individual mines 
    for (i=1:d) 
        mine = [Radmine*cos(theta)+Xmine(i); Radmine*sin(theta)+Ymine(i)]; % showing 
the obstacle 
        plot(mine(1, :), mine(2, :)); 
    end 
    hold off 
end 
xmean = mean(q(:, 1:num)')'; 
ymean = mean(q(:, num+1:2*num)')'; 
xvar = var(q(:, 1:num)')'; 
yvar = var(q(:, num+1:2*num)')'; 
 
figure(3) 
clf(3); 
subplot(2,2,1) 
plot(t, xmean,'b:'); 
hold; 
[xx, qq] = size(traj_hist); 
for i = 1:xx 
    T = [traj_hist(i, 17)-tf/3: 0.01: traj_hist(i,17)]'; 
    Cmx = traj_hist(i, 9:12)'; 
    plot(T, Cmx(1)*T.^3 + Cmx(2)*T.^2 + Cmx(3)*T + Cmx(4), 'r-'); 
    title('Platoon Tracking Mean X Errors'); 
    xlabel('Time (s)'); 
    ylabel('Mean X (m)'); 
end 
hold 
subplot(2,2,2) 
plot(t, ymean,'b:'); 
hold; 
for i = 1:xx 
    T = [traj_hist(i, 17)-tf/3: 0.01: traj_hist(i,17)]'; 
    Cmy = traj_hist(i, 13:16)'; 
    plot(T, Cmy(1)*T.^3 + Cmy(2)*T.^2 + Cmy(3)*T + Cmy(4), 'r-'); 
      title('Platoon Tracking Mean Y Errors'); 
    xlabel('Time (s)'); 
    ylabel('Mean Y (m)'); 
end 
hold 
subplot(2,2,3) 
plot(t, xvar,'b:'); 
hold; 
for i = 1:xx 
    T = [traj_hist(i, 17)-tf/3: 0.01: traj_hist(i,17)]'; 
    Cx = traj_hist(i, 1:4)'; 
    plot(T, Cx(1)*T.^3 + Cx(2)*T.^2 + Cx(3)*T + Cx(4), 'r-'); 
    title('Platoon Tracking Variance X Errors'); 
    xlabel('Time (s)'); 
    ylabel('Variance X ');   
end 
hold 
subplot(2,2,4) 
plot(t, yvar,'b:'); 
hold; 
for i = 1:xx 
    T = [traj_hist(i, 17)-tf/3: 0.01: traj_hist(i,17)]'; 
    Cy = traj_hist(i, 5:8)'; 
    plot(T, Cy(1)*T.^3 + Cy(2)*T.^2 + Cy(3)*T + Cy(4), 'r-'); 
   title('Platoon Tracking Variance Y Errors'); 

    xlabel('Time (s)'); 
    ylabel('Variance Y '); 
end 
legend('actual values', 'desired values'); 
 
hold 
%create movie avi 
%figure(4) 
%movie2avi(M,'test2.avi','FPS', 10,'Quality',99); 
 
collision = 0; 
min_dist = 1000; 
for i = 1:length(q) 
    X = []; 
    for j = 1:num 
      X = [X, [q(i, j); q(i, j+num)]]; 
    end 
    for k = 1:2 
        for l = k+1:num 
            dist = X(:, k) - X(:, l); 
            dist = sqrt(dist'*dist); 
            if (dist < min_dist) 
                min_dist = dist; 
            end 
            if (dist < 0.06*sqrt(2)) 
                error('Collison!'); 
            end 
        end 
    end 
end 
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%Appendix I 
% Yong Tan 
%Tridnet Scholar project 
function qdot = plain6test(t, q) 
% function show the statistical controllers work in an 
%environment with mines and obstacles.  
global Km Kv Ka 
global mudx vardx mudxf vardxf mux 
global mudy vardy mudyf vardyf muy 
global R RAD RRAD Radmine 
global Xobst Yobst RADOBST Cx Cy Cmx Cmy num  
global leg tf Xmine Ymine 
global traj_hist 
%C terms are used to control tragectories.  
%Cx,Cy are variance tragectory controls 
%Cmx,Cmy are mean trajectory controls 
 
feedforward = 1;% drive robots forward in jacobian 
%check distance between robots and the mines, 
findmine=checkdist(q, Xmine, Ymine, Radmine); %find cloest dist and position 
closestdistmine=findmine(1,:);    %find closest mine dist 
posmine=findmine(2,:);            % position of mine 
 
%check distance between robots and the obstacles 
findobst=checkdist(q, Xobst, Yobst, R); 
closestobst=findobst(1,:); 
posobst=findobst(2,:); 
mux = mean(q(1:num)); % x=q... represent the states x, y, x= 1:4, y 5:8 
muy = mean(q(num+1:2*num)); % x(5:8 ) represent the y values 
varx = var(q(1:num)); % variance of x 
vary = var(q(num+1:2*num)); % variance of y 
x_d = mudxf(leg); 
y_d = mudyf(leg); 
    
  magnitude=sqrt((x_d - mux)^2+ (y_d - muy)^2); % distance from centroid of swarm to 
waypoint  
   %waypoint changes if the time is  
   for mm = 1:length(mudxf) 
       if (t < traj_hist(mm, 17)) 
           break; 
       end 
   end 
   leg = mm; 
    %calculated trajectory projection based on each leg 
    Cx = traj_hist(leg, 1:4)';  
    Cy = traj_hist(leg, 5:8)'; 
    Cmx = traj_hist(leg, 9:12)'; 
    Cmy = traj_hist(leg, 13:16)'; 
     
    mudx = Cmx'*[t^3 t^2 t 1]'; %desired x mean position 
    mudy = Cmy'*[t^3 t^2 t 1]'; %desired y mean position 
    dmudx = Cmx'*[3*t^2 2*t 1 0]';  %desired vx mean velocity, derivatives 
    dmudy = Cmy'*[3*t^2 2*t 1 0]';  %desired vy mean velocity, derivatives 
       
    varxt = Cx'*[t^3 t^2 t 1]'; %desired x position variance 
    varyt = Cy'*[t^3 t^2 t 1]'; %desired y position variance 
    dvarxt = Cx'*[3*t^2 2*t 1 0]';  %desired vx velocity variance, derivatives 
    dvaryt = Cy'*[3*t^2 2*t 1 0]';  %desired vy velocity variance, derivatives 
  t 
    J = [1/num*(ones(1,num)); 2/(num-1)*((q(1:num))'-mux)]; % matrix defined by 
state and task function: difference from mean in x 
    Jy = [J(1, :); 2/(num-1)*(q(num+1:2*num)' - muy)]; %alternate matrix defined by 
state -diff from mean in y 
    J = [J zeros(2, num); zeros(2, num) Jy]; %create matrix of no. by 8 to discribe 
x and y characteristics for no. roobots 
    Jp = J'*(J*J')^(-1);        % Moore-Penrose pseudo inverse T ( resultant- 3by 8 
matrix) 
  

    % attractive vectors to keep swarm moving forward 
    xa = [Km*(mudx - mux)+ feedforward*dmudx; Kv*(varxt - varx) + dvarxt];  %the 
changes in mean and variance in x with feedforward term 
    xay = [Km*(mudy - muy)+ feedforward*dmudy; Kv*(varyt - vary) + dvaryt]; %the 
changes in mean and variance in y with feedforward term 
    xd = [xa; xay];% 
 
%*************** generating subsumption in a single robot 
*************************** 
% function to calculate repulsion from each robot 
irrep = zeros(2*num, 1); 
for (i = 1:num)  
 
   q1=q(i); 
   q2=q(i+num); 
     
   Xactm=Xmine(posmine(i));            % actual X position of mine 
   Yactm=Ymine(posmine(i));              % actual Y position of mine 
    
   repelmine=findreppot(q1,q2,Xactm,Yactm,Radmine); % repulsive vectors from mines 
   pot(i)=repelmine(1); 
   pot(i+num)=repelmine(2); 
    
   % repulsive vectors away from obstacles 
   Xactobst=Xobst(posobst(i)); % designating the mines 
   Yactobst=Yobst(posobst(i)); 
    
   repobst=findreppot(q1,q2,Xactobst,Yactobst,R); % repulsive vector from obstacles 
   potx(i)=repobst(1); 
   potx(i+num)=repobst(2); 
    
   totalpot(i)=pot(i)+potx(i); 
   totalpot(i+num)=pot(i+num)+potx(i+num); 
   min_dis = 10000; 
   if ( i <= 0) 
   for j = 1:num 
       if (i ~= j) 
           dis = sqrt((q(i) - q(j))^2 + (q(i+num) - q(j+num))^2) - 0.2; 
           if ((dis < min_dis)& (dis < RRAD)) 
              angle = atan2(q(j+num) - q(i+num), q(j) - q(i)); 
              min_dis = dis;     
          end 
      end 
  end 
  if (min_dis < RRAD) 
      irrep(i) = cos(angle)*(1/(min_dis) - 1/(RRAD));  % added 1/RAD term  repulsive 
potential in x 
      irrep(i+num) = sin(angle)*(1/(min_dis) - 1/(RRAD));  % added  
  end 
  totalpot(i) = totalpot(i) + 0.5*irrep(i); 
  totalpot(i+num) = totalpot(i+num) + 0.5*irrep(i+num); 
    end 
end 
 
qdot = Jp*xd + Ka*(eye(2*num) - Jp*J)*(totalpot'); 
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% Appendix J 
% Yong Tan, Trident Scholar Project 
% This file  shows how the hybrid controller was implemented with subsumption 
implemented in the 
%statistical controller 
global mudx vardx mudxf vardxf % global variables of changes in mean and variance of 
x 
global mudy vardy mudyf vardyf % global variables of changes in mean and variance of 
y 
global Km Kv Ka % motion, velocity and acceleration constants 
global R RAD RRAD Radmine% xoffset, yoffset, mean offset,  
global Xobst Yobst Cx Cy Cmx Cmy num  
global leg tf Xmine Ymine 
global traj_hist 
global A E F 
global avoid_hist XR YR 
global xydifferences 
 
traj_hist = []; 
num=6;             % number of robots 
avoid_hist = zeros(num, 1); 
R = 1;           % Radius of obstacle 
% XOFF = 3;           % x offset fixed 
% YOFF = 1;           % y offset fixed 
mudxf = [2 12 12]; 
mudyf = [10 10 0]; 
vardxf = [5 3 5]; 
vardyf = [3 5 3]; 
Km = 3;  % 3     motion constant 
Kv = 3;  % 3     velocity constant 
Ka = 5; % 1         % acceleration constant 
RAD = 2;            % minimum separtion distance between robots 
RRAD = 0.5;  % 1      % minimum distance between individual robots to obstacle 
Radmine=0.3; 
record = 0; 
Xobst= [3 6 10 ];    
Yobst = [4 8 4 ];    
Xmine = [ 7 10]; 
Ymine = [ 10 6]; 
leg=1; 
 
tf =18; % final time in sec 
tspan = [0 tf]; % time span from 0-20 s 
 
q0=[0 1 2 3 4 3.8105 0 2 0 2 1 2.5]; 
 
XR = [     0.9501    0.4103    0.8462    0.1509    0.8385  0.1365 
    0.2311    0.8936    0.5252    0.6979    0.5681  0.0118 
    0.6068    0.0579    0.2026    0.3784    0.3704  0.8939 
    0.4860    0.3529    0.6721    0.8600    0.7027  0.1991     
    0.8913    0.8132    0.8381    0.8537    0.5466  0.2987 
    0.7621    0.0099    0.0196    0.5936    0.4449  0.6614 
    0.4565    0.1389    0.6813    0.4966    0.6946  0.2844 
    0.0185    0.2028    0.3795    0.8998    0.6213  0.4692 
    0.8214    0.1987    0.8318    0.8216    0.7948  0.0648 
    0.4447    0.6038    0.5028    0.6449    0.9568  0.9883 
    0.6154    0.2722    0.7095    0.8180    0.5226  0.5828 
    0.7919    0.1988    0.4289    0.6602    0.8801  0.4235 
    0.9218    0.0153    0.3046    0.3420    0.1730  0.5155 
    0.7382    0.7468    0.1897    0.2897    0.9797  0.3340 
    0.1763    0.4451    0.1934    0.3412    0.2714  0.4329 
    0.4057    0.9318    0.6822    0.5341    0.2523  0.2259 
    0.9355    0.4660    0.3028    0.7271    0.8757  0.5798 
    0.9169    0.4186    0.5417    0.3093    0.7373  0.7600]; 
 
YR =[    0.9669    0.4608    0.4199    0.6273    0.7036 0.7009     
    0.6649    0.4574    0.7537    0.6991    0.4850  0.9623 
    0.8704    0.4507    0.7939    0.3972    0.1146  0.7505 

    0.0099    0.4122    0.9200    0.4136    0.6649  0.7400 
    0.1370    0.9016    0.8447    0.6552    0.3654  0.4319 
    0.8188    0.0056    0.3678    0.8376    0.1400  0.6343 
    0.4302    0.2974    0.6208    0.3716    0.5668  0.8030 
    0.8903    0.0492    0.7313    0.4253    0.8230  0.0839 
    0.7349    0.6932    0.1939    0.5947    0.6739   0.9455 
    0.6873    0.6501    0.9048    0.5657    0.9994  0.9159 
    0.3461    0.9830    0.5692    0.7165    0.9616  0.6020 
    0.1660    0.5527    0.6318    0.5113    0.0589  0.2536 
    0.1556    0.4001    0.2344    0.7764    0.3603  0.8735 
    0.1911    0.1988    0.5488    0.4893    0.5485  0.5134 
    0.4225    0.6252    0.9316    0.1859    0.2618  0.7327 
    0.8560    0.7334    0.3352    0.7006    0.5973  0.4222 
    0.4902    0.3759    0.6555    0.9827    0.0493  0.9614 
    0.8159    0.0099    0.3919    0.8066    0.5711  0.0721]; 
 
mudx = mean(q0(1:num)); % mean  x at starting time 
mudy = mean(q0(num+1: 2*num));% mean y at starting time  
vardx = var(q0(1:num)); %initial varx 
vardy = var(q0(num+1: 2*num)); 
 
% calculate trajetory history for each leg!!!!! % to be used in function 
for zz = 1 : 3 %number of waypoints 
    tfl = tf/3 + tf/3*(zz-1); 
    til = tfl - tf/3; 
    %polynomial interpolation 
    if (zz > 1) 
        mudx = mudxf(zz-1); 
        mudy = mudyf(zz-1); 
        vardx = vardxf(zz-1); 
        vardy = vardyf(zz-1); 
    end 
    Cx = [til^3 til^2 til 1; 3*til^2 2*til 1 0; tfl^3 tfl^2 tfl 1; 3*tfl^2 2*tfl 1 
0]^(-1)*[vardx; 0; vardxf(zz); 0]; 
    Cy = [til^3 til^2 til 1; 3*til^2 2*til 1 0; tfl^3 tfl^2 tfl 1; 3*tfl^2 2*tfl 1 
0]^(-1)*[vardy; 0; vardyf(zz); 0]; 
     
    Cmx = [til^3 til^2 til 1; 3*til^2 2*til 1 0; tfl^3 tfl^2 tfl 1; 3*tfl^2 2*tfl 1 
0]^(-1)*[mudx; 0; mudxf(zz); 0]; 
    Cmy = [til^3 til^2 til 1; 3*til^2 2*til 1 0; tfl^3 tfl^2 tfl 1; 3*tfl^2 2*tfl 1 
0]^(-1)*[mudy; 0; mudyf(zz); 0]; 
    traj_hist = [traj_hist; Cx' Cy' Cmx' Cmy' tfl]; 
end 
 
figure(1); 
clf(1); 
hold; 
options = odeset('RelTol', 1e-12, 'AbsTol', 1e-10*[ones( 2*num,1)]'); 
[t, q] = ode45('statsump', tspan, q0); % calculates the x, y position based on time 
    
    nextT = 0; 
    axis([-2 16 -3 14]); 
    axis('manual'); 
    xlabel('X (m)'); 
    ylabel('Y (m)'); 
    title('Motion of Platoon Units with the Hybrid Controller '); 
    %hold;  
    theta = 0:0.01:2*pi; 
    [a,b]=size ( Xobst);   
    for (i=1:b) 
        obst = [R*cos(theta)+Xobst(i); R*sin(theta)+Yobst(i)]; % showing the 
obstacle 
        plot(obst(1, :), obst(2, :)); 
    end 
     [a,c]=size (Xmine); 
    for (i=1:c) 
        mine = [Radmine*cos(theta)+Xmine(i); Radmine*sin(theta)+Ymine(i)]; % showing 
the obstacle 



 100 

        plot(mine(1, :), mine(2, :)); 
    end 
    robot = [-0.03 -0.03; 0.03 -0.03; 0.03 0.03; -0.03 0.03];% using little squares 
to represent the  robots 
    clear M; 
    col = ['g', 'r', 'b', 'c', 'm', 'y']; 
    for (i = 1:length(t)) 
        if t(i) >= nextT     % everytime, T, draw and color robot..  
            for (j = 1:num) 
                fill(robot(:, 1)+q(i, j), robot(:, 2)+q(i, j+num), col(j)); % fill 
in shape and color of the simulated robots.  
            end 
            nextT = nextT + 0.10; % at next time T  
        end 
        %M(i) = getframe; 
        %pause 
    end 
    axis('equal'); 
    axis([min(min(q(:, 1:6)))-1, max(max(q(:,1:6)))+1,min(min(q(:, 7:12)))-1, 
max(max(q(:,7:12)))+1]); 
    hold off; 
%     %labelling the plot 
%     for h=1:(length(Xobst)) 
%         gtext(['Obstacle #',num2str(h)]); 
%     end     
%     for p=1:(length(Xmine)) 
%         gtext(['Mine #',num2str(p)]); 
%     end     
%     for j=1:num 
%         gtext(['Unit #',num2str(j)]); 
%     end 
figure(2) 
clf(2); 
for i = 1:6 
    subplot(3,2,i); 
    axis([-2 16 -2 16]); 
    axis('manual'); 
    title(['Unit #', num2str(i)]); 
    ylabel('Y (m)'); 
     if i>4 
    xlabel('X (m)'); 
    end 
    hold 
    plot(q(:, 1+(i-1)), q(:, 1+num+(i-1))); % plot individual paths 
    [a,b]=size ( Xobst); %plot individual obstacles 
    theta = 0:0.01:2*pi; 
    for (i=1:b) 
        obst = [R*cos(theta)+Xobst(i); R*sin(theta)+Yobst(i)]; % showing the 
obstacle 
        plot(obst(1, :), obst(2, :)); 
    end 
    [c,d]=size ( Xmine); % plot individual mines 
    for (i=1:d) 
        mine = [Radmine*cos(theta)+Xmine(i); Radmine*sin(theta)+Ymine(i)]; % showing 
the obstacle 
        plot(mine(1, :), mine(2, :)); 
    end 
    hold off 
end 
xmean = mean(q(:, 1:num)')'; 
ymean = mean(q(:, num+1:2*num)')'; 
xvar = var(q(:, 1:num)')'; 
yvar = var(q(:, num+1:2*num)')'; 
 
figure(3) 
clf(3); 
subplot(2,2,1) 
plot(t, xmean,'b:'); 

hold; 
[xx, qq] = size(traj_hist); 
for i = 1:xx 
    T = [traj_hist(i, 17)-tf/3: 0.01: traj_hist(i,17)]'; 
    Cmx = traj_hist(i, 9:12)'; 
    plot(T, Cmx(1)*T.^3 + Cmx(2)*T.^2 + Cmx(3)*T + Cmx(4), 'r-'); 
    title('Platoon Tracking Mean X Errors'); 
    xlabel('Time (s)'); 
    ylabel('Mean X (m)'); 
end 
hold 
subplot(2,2,2) 
plot(t, ymean,'b:'); 
hold; 
for i = 1:xx 
    T = [traj_hist(i, 17)-tf/3: 0.01: traj_hist(i,17)]'; 
    Cmy = traj_hist(i, 13:16)'; 
    plot(T, Cmy(1)*T.^3 + Cmy(2)*T.^2 + Cmy(3)*T + Cmy(4), 'r-'); 
      title('Platoon Tracking Mean Y Errors'); 
    xlabel('Time (s)'); 
    ylabel('Mean Y (m)'); 
end 
hold 
subplot(2,2,3) 
plot(t, xvar,'b:'); 
hold; 
for i = 1:xx 
    T = [traj_hist(i, 17)-tf/3: 0.01: traj_hist(i,17)]'; 
    Cx = traj_hist(i, 1:4)'; 
    plot(T, Cx(1)*T.^3 + Cx(2)*T.^2 + Cx(3)*T + Cx(4), 'r-'); 
    title('Platoon Tracking Variance X Errors'); 
    xlabel('Time (s)'); 
    ylabel('Variance X ');   
end 
hold 
subplot(2,2,4) 
plot(t, yvar,'b:'); 
hold; 
for i = 1:xx 
    T = [traj_hist(i, 17)-tf/3: 0.01: traj_hist(i,17)]'; 
    Cy = traj_hist(i, 5:8)'; 
    plot(T, Cy(1)*T.^3 + Cy(2)*T.^2 + Cy(3)*T + Cy(4), 'r-'); 
   title('Platoon Tracking Variance Y Errors'); 
    xlabel('Time (s)'); 
    ylabel('Variance Y '); 
end 
legend('actual values', 'desired values'); 
hold 
collision = 0; 
min_dist = 1000; 
for i = 1:length(q) 
    X = []; 
    for j = 1:num 
      X = [X, [q(i, j); q(i, j+num)]]; 
    end 
    for k = 1:2 
        for l = k+1:num 
            dist = X(:, k) - X(:, l); 
            dist = sqrt(dist'*dist); 
            if (dist < min_dist) 
                min_dist = dist; 
            end 
            if (dist < 0.06*sqrt(2)) 
                error('Collison!');   
            end 
        end 
    end 
end 
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%Appendix K 
% Yong Tan, Trident scholar project 
% function to find the position of each individual robots  
% based on their current location.  
function qdot = statsump(t, q) 
 
global Km Kv Ka 
global mudx vardx mudxf vardxf mux 
global mudy vardy mudyf vardyf muy 
global R RAD RRAD Radmine 
global Xobst Yobst RADOBST Cx Cy Cmx Cmy num  
global leg tf Xmine Ymine 
global traj_hist 
global avoid_hist avoid_obst XR YR 
global A E F 
global xydifferences 
 
%C terms are used to control tragectories.  
%Cx,Cy are variance tragectory controls 
%Cmx,Cmy are mean trajectory controls 
Ki=0.8;% gain of the mean  
 
feedforward = 1;% drive robots forward in jacobian 
 
%check distance between robots and the mines, 
findmine=checkdist(q, Xmine, Ymine, Radmine); %find cloest dist and position 
closestdistmine=findmine(1,:);    %find closest mine dist 
posmine=findmine(2,:);            % position of mine 
 
%check distance between robots and the obstacles 
findobst=checkdist(q, Xobst, Yobst, R); 
closestobst=findobst(1,:); 
posobst=findobst(2,:); 
 
mux = mean(q(1:num)); % x=q... represent the states x, y, x= 1:4, y 5:8 
muy = mean(q(num+1:2*num)); % x(5:8 ) represent the y values 
varx = var(q(1:num)); % variance of x 
vary = var(q(num+1:2*num)); % variance of y 
x_d = mudxf(leg); 
y_d = mudyf(leg); 
 
   magnitude=sqrt((x_d - mux)^2+ (y_d - muy)^2); % distance from centroid of swarm 
to waypoint 
   %waypoint changes if the time is  
   for mm = 1:length(mudxf) 
       if (t < traj_hist(mm, 17)) 
           break; 
       end 
   end 
   leg = mm; 
    %calculated trajectory projection based on each leg 
    Cx = traj_hist(leg, 1:4)';  
    Cy = traj_hist(leg, 5:8)'; 
    Cmx = traj_hist(leg, 9:12)'; 
    Cmy = traj_hist(leg, 13:16)'; 
 
    mudx = Cmx'*[t^3 t^2 t 1]'; %desired x mean position 
    mudy = Cmy'*[t^3 t^2 t 1]'; %desired y mean position 
    dmudx = Cmx'*[3*t^2 2*t 1 0]';  %desired vx mean velocity, derivatives 
    dmudy = Cmy'*[3*t^2 2*t 1 0]';  %desired vy mean velocity, derivatives 
     
    varxt = Cx'*[t^3 t^2 t 1]'; %desired x position variance 
    varyt = Cy'*[t^3 t^2 t 1]'; %desired y position variance 
    dvarxt = Cx'*[3*t^2 2*t 1 0]';  %desired vx velocity variance, derivatives 
    dvaryt = Cy'*[3*t^2 2*t 1 0]';  %desired vy velocity variance, derivatives 
  t 
    J = [1/num*(ones(1,num)); 2/(num-1)*((q(1:num))'-mux)]; % matrix defined by 
state and task function: difference from mean in x 

    Jy = [J(1, :); 2/(num-1)*(q(num+1:2*num)' - muy)]; %alternate matrix defined by 
state -diff from mean in y 
    J = [J zeros(2, num); zeros(2, num) Jy]; %create matrix of no. by 8 to discribe 
x and y characteristics for no. roobots 
    Jp = J'*(J*J')^(-1);        % Moore-Penrose pseudo inverse T ( resultant- 3by 8 
matrix) 
  
    % attractive vectors to keep swarm moving forward 
    xa = [Km*(mudx - mux)+ feedforward*dmudx; Kv*(varxt - varx) + dvarxt];  %the 
changes in mean and variance in x with feedforward term 
    xay = [Km*(mudy - muy)+ feedforward*dmudy; Kv*(varyt - vary) + dvaryt]; %the 
changes in mean and variance in y with feedforward term 
    xd = [xa; xay];% 
 
    anglevec = zeros(1,6); % store angles of the vectors 
    % find angle for each vector in grid 
    for f=1:num     
        q1=q(f); 
        q2=q(f+num); 
        gridx=round(q1); 
        gridy=round(q2); 
         
        anglemat=[]; 
        anglemat=set_angle; 
        L_F= length(F); 
        L_A= length ( A); 
        %A=ones( length(F)); 
         
        for z=1:L_A 
            for j=1:L_F 
                if ((z==gridx) && (j==gridy)) 
                    anglevec(f)=anglemat(z,j); 
                    break; 
                end 
            end 
        end 
        anglevec(f); 
     
    end    
    distbtwnrobots=checksepdistance(q); % check distance between each robot 
     
%*************** generating subsumption in a single robot 
*************************** 
% function to calculate repulsion from each robot 
%irrep = zeros(2*num, 1); 
num_active = 0; 
for (i = 1:num)  
 
   q1=q(i); 
   q2=q(i+num); 
 
%%  BEHAVIOR:  AVOID MINE 
if ((closestdistmine(i)<=0.4)||((closestdistmine(i) <=0.8)&&(avoid_hist(i)==1))) 
    avoid_hist(i) = 1; 
    Xactm=Xmine(posmine(i));            % actual X position of mine 
    Yactm=Ymine(posmine(i));              % actual Y position of mine 
    figure(1); 
    plot( Xactm, Yactm,'gd'); 
     
    repelmine=findreppot(q1,q2,Xactm,Yactm,Radmine); 
    pot(i)=repelmine(1); 
    pot(i+num)=repelmine(2); 
    num_active = num_active + 1;     
else 
    %% BEHAVIOR:  AVOID OBSTACLE 
    if ((closestobst(i)<=0.5)||((closestobst(i) <=1)&&(avoid_hist(i)==1))) 
        avoid_hist(i) = 1; 
        Xactobst=Xobst(posobst(i)); 
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        Yactobst=Yobst(posobst(i)); 
        figure(1); 
        plot( Xactobst, Yactobst,'r*'); 
         
        repobst=findreppot(q1,q2,Xactobst,Yactobst,R); 
        pot(i)=repobst(1); 
        pot(i+num)=repobst(2); 
        num_active = num_active + 1; 
    else 
        avoid_hist(i) = 0; 
        %find largest distance between robots and the current mean 
        sepdist=findmaxsep(q1,q2,mudx, mudy); 
         
        %% BEHAVIOR:  AGGREGATION 
        if ((sepdist(1))> 6) 
            lengthc= sepdist(1); 
            anglec= sepdist(2); 
             
            pot(i)=lengthc * cos(anglec); 
            pot(i+num)=lengthc * sin(anglec); 
            num_active = num_active + 1; 
        else  
            %% BEHAVIOR:  SEPARATION 
            checkclosest=[]; 
            checkclosest=distbtwnrobots(i,:); 
            [Val, posi]=min(checkclosest); 
            px=[]; 
            eachrobotrepx=0; 
            eachrobotrepy=0; 
                         
            if Val<1; 
                %check which robots are closer than 1 
                for ic=1:num 
                    valuedist =checkclosest(1,ic); 
                    if valuedist<1 
                        xxd=xydifferences(i,ic); 
                        xyd=xydifferences(i,ic+num) ;  
                         
                        theta_ba=atan2(xyd, xxd); 
                        px=(1/valuedist)*cos(theta_ba); 
                        px2=(1/valuedist)*sin(theta_ba); 
                         
                    else 
                        px=0; 
                        px2=0; 
                    end 
                    eachrobotrepx=eachrobotrepx+px; 
                    eachrobotrepy=eachrobotrepy+px2; 
                end 
                   
            pot(i)=eachrobotrepx; 
            pot(i+num)=eachrobotrepy; 
            num_active = num_active + 1;            
               
            %% BEHAVIOR:  RANDOM 
            else 
                
                if ((t > 0)&&(num_active < 3))  
                   pot(i) = 0.5*XR(ceil(t), i); 
                   pot(i+num) = 0.5*YR(ceil(t), i); 
                   num_active = num_active + 1;     
               else 
                    pot(i) = 0; 
                    pot(i+num) = 0; 
                end 
            end 
        end 
    end 

end 
end 
 
qdot = Jp*xd + Ka*(eye(2*num) - Jp*J)*(pot'); 
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% Appendix L 
% Yong Tan, Trident Scholar Project 
% This file simulates the hybrid controller in a drift environment 
global mudx vardx mudxf vardxf % global variables of changes in mean and variance of 
x 
global mudy vardy mudyf vardyf % global variables of changes in mean and variance of 
y 
global Km Kv Ka % motion, velocity and acceleration constants 
global R RAD RRAD Radmine% xoffset, yoffset, mean offset,  
global Xobst Yobst Cx Cy Cmx Cmy num  
global leg tf Xmine Ymine 
global traj_hist 
global A E F 
global avoid_hist XR YR 
global xydifferences 
 
traj_hist = []; 
num=6;             % number of robots 
avoid_hist = zeros(num, 1); 
R = 1;           % Radius of obstacle 
mudxf = [2 12 12]; 
mudyf = [10 10 0]; 
vardxf = [5 3 5]; 
vardyf = [3 5 3]; 
Km = 3;  % 3     motion constant 
Kv = 3;  % 3     velocity constant 
Ka = 5; % 1         % acceleration constant 
RAD = 2;            % minimum separtion distance between robots 
RRAD = 0.5;  % 1      % minimum distance between individual robots to obstacle 
Radmine=0.3; 
record = 0; 
Xobst= [3 6 10 ];    
Yobst = [4 8 4 ];    
Xmine = [ 7 10]; 
Ymine = [ 10 6]; 
leg=1; 
 
tf =18; % final time in sec 
tspan = [0 tf]; % time span from 0-20 s 
 
q0=[0 1 2 3 4 3.8105 0 2 0 2 1 2.5]; 
 
XR = [     0.9501    0.4103    0.8462    0.1509    0.8385  0.1365 
    0.2311    0.8936    0.5252    0.6979    0.5681  0.0118 
    0.6068    0.0579    0.2026    0.3784    0.3704  0.8939 
    0.4860    0.3529    0.6721    0.8600    0.7027  0.1991     
    0.8913    0.8132    0.8381    0.8537    0.5466  0.2987 
    0.7621    0.0099    0.0196    0.5936    0.4449  0.6614 
    0.4565    0.1389    0.6813    0.4966    0.6946  0.2844 
    0.0185    0.2028    0.3795    0.8998    0.6213  0.4692 
    0.8214    0.1987    0.8318    0.8216    0.7948  0.0648 
    0.4447    0.6038    0.5028    0.6449    0.9568  0.9883 
    0.6154    0.2722    0.7095    0.8180    0.5226  0.5828 
    0.7919    0.1988    0.4289    0.6602    0.8801  0.4235 
    0.9218    0.0153    0.3046    0.3420    0.1730  0.5155 
    0.7382    0.7468    0.1897    0.2897    0.9797  0.3340 
    0.1763    0.4451    0.1934    0.3412    0.2714  0.4329 
    0.4057    0.9318    0.6822    0.5341    0.2523  0.2259 
    0.9355    0.4660    0.3028    0.7271    0.8757  0.5798 
    0.9169    0.4186    0.5417    0.3093    0.7373  0.7600]; 
 
YR =[    0.9669    0.4608    0.4199    0.6273    0.7036 0.7009     
    0.6649    0.4574    0.7537    0.6991    0.4850  0.9623 
    0.8704    0.4507    0.7939    0.3972    0.1146  0.7505 
    0.0099    0.4122    0.9200    0.4136    0.6649  0.7400 
    0.1370    0.9016    0.8447    0.6552    0.3654  0.4319 
    0.8188    0.0056    0.3678    0.8376    0.1400  0.6343 
    0.4302    0.2974    0.6208    0.3716    0.5668  0.8030 

    0.8903    0.0492    0.7313    0.4253    0.8230  0.0839 
    0.7349    0.6932    0.1939    0.5947    0.6739   0.9455 
    0.6873    0.6501    0.9048    0.5657    0.9994  0.9159 
    0.3461    0.9830    0.5692    0.7165    0.9616  0.6020 
    0.1660    0.5527    0.6318    0.5113    0.0589  0.2536 
    0.1556    0.4001    0.2344    0.7764    0.3603  0.8735 
    0.1911    0.1988    0.5488    0.4893    0.5485  0.5134 
    0.4225    0.6252    0.9316    0.1859    0.2618  0.7327 
    0.8560    0.7334    0.3352    0.7006    0.5973  0.4222 
    0.4902    0.3759    0.6555    0.9827    0.0493  0.9614 
    0.8159    0.0099    0.3919    0.8066    0.5711  0.0721]; 
 
mudx = mean(q0(1:num)); % mean  x at starting time 
mudy = mean(q0(num+1: 2*num));% mean y at starting time  
vardx = var(q0(1:num)); %initial varx 
vardy = var(q0(num+1: 2*num)); 
 
% calculate trajetory history for each leg!!!!! % to be used in function 
for zz = 1 : 3 %number of waypoints 
    tfl = tf/3 + tf/3*(zz-1); 
    til = tfl - tf/3; 
    %polynomial interpolation 
    if (zz > 1) 
        mudx = mudxf(zz-1); 
        mudy = mudyf(zz-1); 
        vardx = vardxf(zz-1); 
        vardy = vardyf(zz-1); 
    end 
    Cx = [til^3 til^2 til 1; 3*til^2 2*til 1 0; tfl^3 tfl^2 tfl 1; 3*tfl^2 2*tfl 1 
0]^(-1)*[vardx; 0; vardxf(zz); 0]; 
    Cy = [til^3 til^2 til 1; 3*til^2 2*til 1 0; tfl^3 tfl^2 tfl 1; 3*tfl^2 2*tfl 1 
0]^(-1)*[vardy; 0; vardyf(zz); 0]; 
     
    Cmx = [til^3 til^2 til 1; 3*til^2 2*til 1 0; tfl^3 tfl^2 tfl 1; 3*tfl^2 2*tfl 1 
0]^(-1)*[mudx; 0; mudxf(zz); 0]; 
    Cmy = [til^3 til^2 til 1; 3*til^2 2*til 1 0; tfl^3 tfl^2 tfl 1; 3*tfl^2 2*tfl 1 
0]^(-1)*[mudy; 0; mudyf(zz); 0]; 
    traj_hist = [traj_hist; Cx' Cy' Cmx' Cmy' tfl]; 
end 
 
figure(1); 
clf(1); 
hold; 
options = odeset('RelTol', 1e-12, 'AbsTol', 1e-10*[ones( 2*num,1)]'); 
[t, q] = ode45('newstatsump', tspan, q0); % calculates the x, y position based on 
time 
%plot vector fields 
test; 
    nextT = 0; 
    axis([-2 16 -3 14]); 
    axis('manual'); 
    xlabel('X (m)'); 
    ylabel('Y (m)'); 
    title('Motion of Platoon Units with the Hybrid Controller Without Vector 
Compensation'); 
    %hold;  
    theta = 0:0.01:2*pi; 
    [a,b]=size ( Xobst);   
    for (i=1:b) 
        obst = [R*cos(theta)+Xobst(i); R*sin(theta)+Yobst(i)]; % showing the 
obstacle 
        plot(obst(1, :), obst(2, :)); 
    end 
     [a,c]=size (Xmine); 
    for (i=1:c) 
        mine = [Radmine*cos(theta)+Xmine(i); Radmine*sin(theta)+Ymine(i)]; % showing 
the obstacle 
        plot(mine(1, :), mine(2, :)); 
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    end 
    robot = [-0.03 -0.03; 0.03 -0.03; 0.03 0.03; -0.03 0.03];% using little squares 
to represent the  robots 
    clear M; 
    col = ['g', 'r', 'b', 'c', 'm', 'y']; 
    for (i = 1:length(t)) 
        if t(i) >= nextT     % everytime, T, draw and color robot..  
            for (j = 1:num) 
                fill(robot(:, 1)+q(i, j), robot(:, 2)+q(i, j+num), col(j)); % fill 
in shape and color of the simulated robots.  
            end 
            nextT = nextT + 0.10; % at next time T  
        end 
        %M(i) = getframe; 
        %pause 
    end 
    axis('equal'); 
    axis([min(min(q(:, 1:6)))-1, max(max(q(:,1:6)))+1,min(min(q(:, 7:12)))-1, 
max(max(q(:,7:12)))+1]); 
    hold off;    
%     %labelling the plot 
%     for h=1:(length(Xobst)) 
%         gtext(['Obstacle #',num2str(h)]); 
%     end     
%     for p=1:(length(Xmine)) 
%         gtext(['Mine #',num2str(p)]); 
%     end     
%     for j=1:num 
%         gtext(['Unit #',num2str(j)]); 
%     end   
figure(2) 
clf(2); 
for i = 1:6 
    subplot(3,2,i); 
    axis([-2 16 -2 16]); 
    axis('manual'); 
    title(['Unit #', num2str(i)]); 
    ylabel('Y (m)'); 
     if i>4 
    xlabel('X (m)'); 
    end 
    hold 
    plot(q(:, 1+(i-1)), q(:, 1+num+(i-1))); % plot individual paths 
    [a,b]=size ( Xobst); %plot individual obstacles 
    theta = 0:0.01:2*pi; 
    for (i=1:b) 
        obst = [R*cos(theta)+Xobst(i); R*sin(theta)+Yobst(i)]; % showing the 
obstacle 
        plot(obst(1, :), obst(2, :)); 
    end 
    [c,d]=size ( Xmine); % plot individual mines 
    for (i=1:d) 
        mine = [Radmine*cos(theta)+Xmine(i); Radmine*sin(theta)+Ymine(i)]; % showing 
the obstacle 
        plot(mine(1, :), mine(2, :)); 
    end 
    hold off 
end 
xmean = mean(q(:, 1:num)')'; 
ymean = mean(q(:, num+1:2*num)')'; 
xvar = var(q(:, 1:num)')'; 
yvar = var(q(:, num+1:2*num)')'; 
 
figure(3) 
clf(3); 
subplot(2,2,1) 
plot(t, xmean,'b:'); 
hold; 

[xx, qq] = size(traj_hist); 
for i = 1:xx 
    T = [traj_hist(i, 17)-tf/3: 0.01: traj_hist(i,17)]'; 
    Cmx = traj_hist(i, 9:12)'; 
    plot(T, Cmx(1)*T.^3 + Cmx(2)*T.^2 + Cmx(3)*T + Cmx(4), 'r-'); 
    title('Platoon Tracking Mean X Errors'); 
    xlabel('Time (s)'); 
    ylabel('Mean X (m)'); 
end 
hold 
subplot(2,2,2) 
plot(t, ymean,'b:'); 
hold; 
for i = 1:xx 
    T = [traj_hist(i, 17)-tf/3: 0.01: traj_hist(i,17)]'; 
    Cmy = traj_hist(i, 13:16)'; 
    plot(T, Cmy(1)*T.^3 + Cmy(2)*T.^2 + Cmy(3)*T + Cmy(4), 'r-'); 
      title('Platoon Tracking Mean Y Errors'); 
    xlabel('Time (s)'); 
    ylabel('Mean Y (m)'); 
end 
hold 
subplot(2,2,3) 
plot(t, xvar,'b:'); 
hold; 
for i = 1:xx 
    T = [traj_hist(i, 17)-tf/3: 0.01: traj_hist(i,17)]'; 
    Cx = traj_hist(i, 1:4)'; 
    plot(T, Cx(1)*T.^3 + Cx(2)*T.^2 + Cx(3)*T + Cx(4), 'r-'); 
    title('Platoon Tracking Variance X Errors'); 
    xlabel('Time (s)'); 
    ylabel('Variance X ');   
end 
hold 
subplot(2,2,4) 
plot(t, yvar,'b:'); 
hold; 
for i = 1:xx 
    T = [traj_hist(i, 17)-tf/3: 0.01: traj_hist(i,17)]'; 
    Cy = traj_hist(i, 5:8)'; 
    plot(T, Cy(1)*T.^3 + Cy(2)*T.^2 + Cy(3)*T + Cy(4), 'r-'); 
   title('Platoon Tracking Variance Y Errors'); 
    xlabel('Time (s)'); 
    ylabel('Variance Y '); 
end 
legend('actual values', 'desired values'); 
hold 
 
collision = 0; 
min_dist = 1000; 
for i = 1:length(q) 
    X = []; 
    for j = 1:num 
      X = [X, [q(i, j); q(i, j+num)]]; 
    end 
    for k = 1:2 
        for l = k+1:num 
            dist = X(:, k) - X(:, l); 
            dist = sqrt(dist'*dist); 
            if (dist < min_dist) 
                min_dist = dist; 
            end 
            if (dist < 0.06*sqrt(2)) 
                error('Collison!'); 
            end 
        end 
    end 
end 
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%Appendix M 
% Yong Tan, Trident Scholar Project 
% Function to run program that simulates movement of robots 
% in a drift environment 
 
function qdot = newstatsump(t, q) 
% function show the statistical controllers work in an 
%environment with mines and obstacles.  
 
global Km Kv Ka 
global mudx vardx mudxf vardxf mux 
global mudy vardy mudyf vardyf muy 
global R RAD RRAD Radmine 
global Xobst Yobst RADOBST Cx Cy Cmx Cmy num  
global leg tf Xmine Ymine 
global traj_hist 
global avoid_hist avoid_obst XR YR 
global A E F 
global xydifferences 
 
%C terms are used to control tragectories.  
%Cx,Cy are variance tragectory controls 
%Cmx,Cmy are mean trajectory controls 
Ki=0.8;% gain of the mean  
% Kivx=0.25; % gain of the variance 
% Kivy=0.8; 
 
feedforward = 1;% drive robots forward in jacobian 
 
%check distance between robots and the mines, 
findmine=checkdist(q, Xmine, Ymine, Radmine); %find cloest dist and position 
closestdistmine=findmine(1,:);    %find closest mine dist 
posmine=findmine(2,:);            % position of mine 
 
%check distance between robots and the obstacles 
findobst=checkdist(q, Xobst, Yobst, R); 
closestobst=findobst(1,:); 
posobst=findobst(2,:); 
 
mux = mean(q(1:num)); % x=q... represent the states x, y, x= 1:4, y 5:8 
muy = mean(q(num+1:2*num)); % x(5:8 ) represent the y values 
varx = var(q(1:num)); % variance of x 
vary = var(q(num+1:2*num)); % variance of y 
x_d = mudxf(leg); 
y_d = mudyf(leg); 
 
   magnitude=sqrt((x_d - mux)^2+ (y_d - muy)^2); % distance from centroid of swarm 
to waypoint 
    
   %waypoint changes if the time is  
   for mm = 1:length(mudxf) 
       if (t < traj_hist(mm, 17)) 
           break; 
       end 
   end 
   leg = mm; 
    %calculated trajectory projection based on each leg 
    Cx = traj_hist(leg, 1:4)';  
    Cy = traj_hist(leg, 5:8)'; 
    Cmx = traj_hist(leg, 9:12)'; 
    Cmy = traj_hist(leg, 13:16)'; 
 
    mudx = Cmx'*[t^3 t^2 t 1]'; %desired x mean position 
    mudy = Cmy'*[t^3 t^2 t 1]'; %desired y mean position 
    dmudx = Cmx'*[3*t^2 2*t 1 0]';  %desired vx mean velocity, derivatives 
    dmudy = Cmy'*[3*t^2 2*t 1 0]';  %desired vy mean velocity, derivatives 
     
    varxt = Cx'*[t^3 t^2 t 1]'; %desired x position variance 

    varyt = Cy'*[t^3 t^2 t 1]'; %desired y position variance 
    dvarxt = Cx'*[3*t^2 2*t 1 0]';  %desired vx velocity variance, derivatives 
    dvaryt = Cy'*[3*t^2 2*t 1 0]';  %desired vy velocity variance, derivatives 
 
  t 
    J = [1/num*(ones(1,num)); 2/(num-1)*((q(1:num))'-mux)]; % matrix defined by 
state and task function: difference from mean in x 
    Jy = [J(1, :); 2/(num-1)*(q(num+1:2*num)' - muy)]; %alternate matrix defined by 
state -diff from mean in y 
    J = [J zeros(2, num); zeros(2, num) Jy]; %create matrix of no. by 8 to discribe 
x and y characteristics for no. roobots 
    Jp = J'*(J*J')^(-1);        % Moore-Penrose pseudo inverse T ( resultant- 3by 8 
matrix) 
  
    % attractive vectors to keep swarm moving forward 
    xa = [Km*(mudx - mux)+ feedforward*dmudx; Kv*(varxt - varx) + dvarxt];  %the 
changes in mean and variance in x with feedforward term 
    xay = [Km*(mudy - muy)+ feedforward*dmudy; Kv*(varyt - vary) + dvaryt]; %the 
changes in mean and variance in y with feedforward term 
    xd = [xa; xay];% 
 
    anglevec = zeros(1,6); % store angles of the vectors 
    % find angle for each vector in grid 
    for f=1:num     
        q1=q(f); 
        q2=q(f+num); 
        gridx=round(q1); 
        gridy=round(q2); 
         
        anglemat=[]; 
        anglemat=set_angle; 
        L_F= length(F); 
        L_A= length ( A); 
        %A=ones( length(F)); 
         
        for z=1:L_A 
            for j=1:L_F 
                if ((z==gridx) && (j==gridy)) 
                    anglevec(f)=anglemat(z,j); 
                    break; 
                end 
            end 
        end 
        anglevec(f); 
     
    end 
    distbtwnrobots=checksepdistance(q); % check distance between each robot 
     
%*************** generating subsumption in a single robot 
*************************** 
% function to calculate repulsion from each robot 
%irrep = zeros(2*num, 1); 
num_active = 0; 
for (i = 1:num)  
   q1=q(i); 
   q2=q(i+num); 
 
%%  BEHAVIOR:  AVOID MINE 
if ((closestdistmine(i)<=0.4)||((closestdistmine(i) <=0.8)&&(avoid_hist(i)==1))) 
    avoid_hist(i) = 1; 
    Xactm=Xmine(posmine(i));            % actual X position of mine 
    Yactm=Ymine(posmine(i));              % actual Y position of mine 
    figure(1); 
    plot( Xactm, Yactm,'gd'); 
     
    repelmine=findreppot(q1,q2,Xactm,Yactm,Radmine); 
    pot(i)=repelmine(1); 
    pot(i+num)=repelmine(2); 
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    num_active = num_active + 1;     
else 
    %% BEHAVIOR:  AVOID OBSTACLE 
    if ((closestobst(i)<=0.5)||((closestobst(i) <=1)&&(avoid_hist(i)==1))) 
        avoid_hist(i) = 1; 
        Xactobst=Xobst(posobst(i)); 
        Yactobst=Yobst(posobst(i)); 
        figure(1); 
        plot( Xactobst, Yactobst,'r*'); 
         
        repobst=findreppot(q1,q2,Xactobst,Yactobst,R); 
        pot(i)=repobst(1); 
        pot(i+num)=repobst(2); 
        num_active = num_active + 1; 
    else 
        avoid_hist(i) = 0; 
        %find largest distance between robots and the current mean 
        sepdist=findmaxsep(q1,q2,mudx, mudy); 
         
        %% BEHAVIOR:  AGGREGATION 
        if ((sepdist(1))> 6) 
            lengthc= sepdist(1); 
            anglec= sepdist(2); 
             
            pot(i)=lengthc * cos(anglec); 
            pot(i+num)=lengthc * sin(anglec); 
            num_active = num_active + 1; 
        else  
            %% BEHAVIOR:  SEPARATION 
            checkclosest=[]; 
            checkclosest=distbtwnrobots(i,:); 
            [Val, posi]=min(checkclosest); 
            px=[]; 
            eachrobotrepx=0; 
            eachrobotrepy=0; 
                         
            if Val<1; 
                %check whcih robots are closer than 1 
                for ic=1:num 
                    valuedist =checkclosest(1,ic); 
                    if valuedist<1 
                        xxd=xydifferences(i,ic); 
                        xyd=xydifferences(i,ic+num) ;  
                         
                        theta_ba=atan2(xyd, xxd); 
                        px=(1/valuedist)*cos(theta_ba); 
                        px2=(1/valuedist)*sin(theta_ba); 
                    else 
                        px=0; 
                        px2=0; 
                    end 
                    eachrobotrepx=eachrobotrepx+px; 
                    eachrobotrepy=eachrobotrepy+px2; 
                end 
                   
            pot(i)=eachrobotrepx; 
            pot(i+num)=eachrobotrepy; 
            num_active = num_active + 1;            
            %% BEHAVIOR:  RANDOM 
            else 
                % 
                if ((t > 0)&&(num_active < 3))  
                   pot(i) = 0.5*XR(ceil(t), i); 
                   pot(i+num) = 0.5*YR(ceil(t), i); 
                   num_active = num_active + 1;     
               else 
                    pot(i) = 0; 
                    pot(i+num) = 0; 

                end 
            end 
        end 
    end 
end 
end 
qdot = Jp*xd + Ka*(eye(2*num) - Jp*J)*(pot')+5*[cos(anglevec'); sin(anglevec')] ; 
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% Appendix N 
% Yong Tan, Tridnet Scholar project 
% This file compensates for the drift vector of hybrid controller 
global mudx vardx mudxf vardxf % global variables of changes in mean and variance of 
x 
global mudy vardy mudyf vardyf % global variables of changes in mean and variance of 
y 
global Km Kv Ka % motion, velocity and acceleration constants 
global R RAD RRAD Radmine% xoffset, yoffset, mean offset,  
global Xobst Yobst Cx Cy Cmx Cmy num  
global leg tf Xmine Ymine 
global traj_hist 
global A E F 
global avoid_hist XR YR 
global xydifferences 
 
traj_hist = []; 
num=6;             % number of robots 
avoid_hist = zeros(num, 1); 
R = 1;           % Radius of obstacle 
 
mudxf = [2 12 12]; 
mudyf = [10 10 0]; 
vardxf = [5 3 5]; 
vardyf = [3 5 3]; 
Km = 3;  % 3     motion constant 
Kv = 5;  % 3     velocity constant 
Ka = 5; % 1         % acceleration constant 
RAD = 2;            % minimum separtion distance between robots 
RRAD = 0.5;  % 1      % minimum distance between individual robots to obstacle 
Radmine=0.3; 
record = 0; 
Xobst= [3 6 10 ];    
Yobst = [4 8 4 ];    
Xmine = [ 7 10]; 
Ymine = [ 10 6]; 
leg=1; 
 
tf =18; % final time in sec 
tspan = [0 tf]; % time span from 0-20 s 
 
q0=[0 1 2 3 4 3.8105 0 2 0 2 1 2.5 0 0 0 0]; 
 
XR = [     0.9501    0.4103    0.8462    0.1509    0.8385  0.1365 
    0.2311    0.8936    0.5252    0.6979    0.5681  0.0118 
    0.6068    0.0579    0.2026    0.3784    0.3704  0.8939 
    0.4860    0.3529    0.6721    0.8600    0.7027  0.1991     
    0.8913    0.8132    0.8381    0.8537    0.5466  0.2987 
    0.7621    0.0099    0.0196    0.5936    0.4449  0.6614 
    0.4565    0.1389    0.6813    0.4966    0.6946  0.2844 
    0.0185    0.2028    0.3795    0.8998    0.6213  0.4692 
    0.8214    0.1987    0.8318    0.8216    0.7948  0.0648 
    0.4447    0.6038    0.5028    0.6449    0.9568  0.9883 
    0.6154    0.2722    0.7095    0.8180    0.5226  0.5828 
    0.7919    0.1988    0.4289    0.6602    0.8801  0.4235 
    0.9218    0.0153    0.3046    0.3420    0.1730  0.5155 
    0.7382    0.7468    0.1897    0.2897    0.9797  0.3340 
    0.1763    0.4451    0.1934    0.3412    0.2714  0.4329 
    0.4057    0.9318    0.6822    0.5341    0.2523  0.2259 
    0.9355    0.4660    0.3028    0.7271    0.8757  0.5798 
    0.9169    0.4186    0.5417    0.3093    0.7373  0.7600]; 
 
YR =[    0.9669    0.4608    0.4199    0.6273    0.7036 0.7009     
    0.6649    0.4574    0.7537    0.6991    0.4850  0.9623 
    0.8704    0.4507    0.7939    0.3972    0.1146  0.7505 
    0.0099    0.4122    0.9200    0.4136    0.6649  0.7400 
    0.1370    0.9016    0.8447    0.6552    0.3654  0.4319 
    0.8188    0.0056    0.3678    0.8376    0.1400  0.6343 

    0.4302    0.2974    0.6208    0.3716    0.5668  0.8030 
    0.8903    0.0492    0.7313    0.4253    0.8230  0.0839 
    0.7349    0.6932    0.1939    0.5947    0.6739   0.9455 
    0.6873    0.6501    0.9048    0.5657    0.9994  0.9159 
    0.3461    0.9830    0.5692    0.7165    0.9616  0.6020 
    0.1660    0.5527    0.6318    0.5113    0.0589  0.2536 
    0.1556    0.4001    0.2344    0.7764    0.3603  0.8735 
    0.1911    0.1988    0.5488    0.4893    0.5485  0.5134 
    0.4225    0.6252    0.9316    0.1859    0.2618  0.7327 
    0.8560    0.7334    0.3352    0.7006    0.5973  0.4222 
    0.4902    0.3759    0.6555    0.9827    0.0493  0.9614 
    0.8159    0.0099    0.3919    0.8066    0.5711  0.0721]; 
 
mudx = mean(q0(1:num)); % mean  x at starting time 
mudy = mean(q0(num+1: 2*num));% mean y at starting time  
vardx = var(q0(1:num)); %initial varx 
vardy = var(q0(num+1: 2*num)); 
 
% calculate trajetory history for each leg!!!!! % to be used in function 
for zz = 1 : 3 %number of waypoints 
    tfl = tf/3 + tf/3*(zz-1); 
    til = tfl - tf/3; 
    %polynomial interpolation 
    if (zz > 1) 
        mudx = mudxf(zz-1); 
        mudy = mudyf(zz-1); 
        vardx = vardxf(zz-1); 
        vardy = vardyf(zz-1); 
    end 
    Cx = [til^3 til^2 til 1; 3*til^2 2*til 1 0; tfl^3 tfl^2 tfl 1; 3*tfl^2 2*tfl 1 
0]^(-1)*[vardx; 0; vardxf(zz); 0]; 
    Cy = [til^3 til^2 til 1; 3*til^2 2*til 1 0; tfl^3 tfl^2 tfl 1; 3*tfl^2 2*tfl 1 
0]^(-1)*[vardy; 0; vardyf(zz); 0]; 
     
    Cmx = [til^3 til^2 til 1; 3*til^2 2*til 1 0; tfl^3 tfl^2 tfl 1; 3*tfl^2 2*tfl 1 
0]^(-1)*[mudx; 0; mudxf(zz); 0]; 
    Cmy = [til^3 til^2 til 1; 3*til^2 2*til 1 0; tfl^3 tfl^2 tfl 1; 3*tfl^2 2*tfl 1 
0]^(-1)*[mudy; 0; mudyf(zz); 0]; 
    traj_hist = [traj_hist; Cx' Cy' Cmx' Cmy' tfl]; 
end 
 
figure(1); 
clf(1); 
hold; 
options = odeset('RelTol', 1e-12, 'AbsTol', 1e-10*[ones( 2*num,1)]'); 
[t, q] = ode45('veccompensate', tspan, q0); % calculates the x, y position based on 
time    
test; %plot vector fields 
    nextT = 0; 
    axis([-2 16 -3 14]); 
    axis('manual'); 
    xlabel('X (m)'); 
    ylabel('Y (m)'); 
    title('Motion of Platoon Units with the Hybrid Controller and Vector 
Compensation'); 
    %hold;  
    theta = 0:0.01:2*pi; 
    [a,b]=size ( Xobst);   
    for (i=1:b) 
        obst = [R*cos(theta)+Xobst(i); R*sin(theta)+Yobst(i)]; % showing the 
obstacle 
        plot(obst(1, :), obst(2, :)); 
    end 
     [a,c]=size (Xmine); 
    for (i=1:c) 
        mine = [Radmine*cos(theta)+Xmine(i); Radmine*sin(theta)+Ymine(i)]; % showing 
the obstacle 
        plot(mine(1, :), mine(2, :)); 
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    end 
    robot = [-0.03 -0.03; 0.03 -0.03; 0.03 0.03; -0.03 0.03];% using little squares 
to represent the  robots 
    clear M; 
    col = ['g', 'r', 'b', 'c', 'm', 'y']; 
    for (i = 1:length(t)) 
        if t(i) >= nextT     % everytime, T, draw and color robot..  
            for (j = 1:num) 
                fill(robot(:, 1)+q(i, j), robot(:, 2)+q(i, j+num), col(j)); % fill 
in shape and color of the simulated robots.  
            end 
            nextT = nextT + 0.10; % at next time T  
        end 
        %M(i) = getframe; 
        %pause 
    end 
    axis('equal'); 
    axis([min(min(q(:, 1:6)))-1, max(max(q(:,1:6)))+1,min(min(q(:, 7:12)))-1, 
max(max(q(:,7:12)))+1]); 
    hold off;     
%     %labelling the plot 
%     for h=1:(length(Xobst)) 
%         gtext(['Obstacle #',num2str(h)]); 
%     end     
%     for p=1:(length(Xmine)) 
%         gtext(['Mine #',num2str(p)]); 
%     end     
%     for j=1:num 
%         gtext(['Unit #',num2str(j)]); 
%     end 
figure(2) 
clf(2); 
for i = 1:6 
    subplot(3,2,i); 
    axis([-2 16 -2 16]); 
    axis('manual'); 
    title(['Unit #', num2str(i)]); 
    ylabel('Y (m)'); 
     if i>4 
    xlabel('X (m)'); 
    end 
    hold 
    plot(q(:, 1+(i-1)), q(:, 1+num+(i-1))); % plot individual paths 
    [a,b]=size ( Xobst); %plot individual obstacles 
    theta = 0:0.01:2*pi; 
    for (i=1:b) 
        obst = [R*cos(theta)+Xobst(i); R*sin(theta)+Yobst(i)]; % showing the 
obstacle 
        plot(obst(1, :), obst(2, :)); 
    end 
    [c,d]=size ( Xmine); % plot individual mines 
    for (i=1:d) 
        mine = [Radmine*cos(theta)+Xmine(i); Radmine*sin(theta)+Ymine(i)]; % showing 
the obstacle 
        plot(mine(1, :), mine(2, :)); 
    end 
    hold off 
end 
xmean = mean(q(:, 1:num)')'; 
ymean = mean(q(:, num+1:2*num)')'; 
xvar = var(q(:, 1:num)')'; 
yvar = var(q(:, num+1:2*num)')'; 
figure(3) 
clf(3); 
subplot(2,2,1) 
plot(t, xmean,'b:'); 
hold; 
[xx, qq] = size(traj_hist); 

for i = 1:xx 
    T = [traj_hist(i, 17)-tf/3: 0.01: traj_hist(i,17)]'; 
    Cmx = traj_hist(i, 9:12)'; 
    plot(T, Cmx(1)*T.^3 + Cmx(2)*T.^2 + Cmx(3)*T + Cmx(4), 'r-'); 
    title('Platoon Tracking Mean X Errors'); 
    xlabel('Time (s)'); 
    ylabel('Mean X (m)'); 
end 
hold 
subplot(2,2,2) 
plot(t, ymean,'b:'); 
hold; 
for i = 1:xx 
    T = [traj_hist(i, 17)-tf/3: 0.01: traj_hist(i,17)]'; 
    Cmy = traj_hist(i, 13:16)'; 
    plot(T, Cmy(1)*T.^3 + Cmy(2)*T.^2 + Cmy(3)*T + Cmy(4), 'r-'); 
      title('Platoon Tracking Mean Y Errors'); 
    xlabel('Time (s)'); 
    ylabel('Mean Y (m)'); 
end 
hold 
subplot(2,2,3) 
plot(t, xvar,'b:'); 
hold; 
for i = 1:xx 
    T = [traj_hist(i, 17)-tf/3: 0.01: traj_hist(i,17)]'; 
    Cx = traj_hist(i, 1:4)'; 
    plot(T, Cx(1)*T.^3 + Cx(2)*T.^2 + Cx(3)*T + Cx(4), 'r-'); 
    title('Platoon Tracking Variance X Errors'); 
    xlabel('Time (s)'); 
    ylabel('Variance X ');   
end 
hold 
subplot(2,2,4) 
plot(t, yvar,'b:'); 
hold; 
for i = 1:xx 
    T = [traj_hist(i, 17)-tf/3: 0.01: traj_hist(i,17)]'; 
    Cy = traj_hist(i, 5:8)'; 
    plot(T, Cy(1)*T.^3 + Cy(2)*T.^2 + Cy(3)*T + Cy(4), 'r-'); 
   title('Platoon Tracking Variance Y Errors'); 
    xlabel('Time (s)'); 
    ylabel('Variance Y '); 
end 
legend('actual values', 'desired values'); 
hold 
 
collision = 0; 
min_dist = 1000; 
for i = 1:length(q) 
    X = []; 
    for j = 1:num 
      X = [X, [q(i, j); q(i, j+num)]]; 
    end 
    for k = 1:2 
        for l = k+1:num 
            dist = X(:, k) - X(:, l); 
            dist = sqrt(dist'*dist); 
            if (dist < min_dist) 
                min_dist = dist; 
            end 
            if (dist < 0.06*sqrt(2)) 
                error('Collison!'); 
                 
            end 
        end 
    end 
end 
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% Appendix O 
% Yong Tan, Trident Scholar Project  
% FUnction that runs to show how robots compensate for drift.  
 
function qdot = veccompensate(t, q) 
% function show the statistical controllers work in an 
%environment with mines and obstacles.  
 
global Km Kv Ka 
global mudx vardx mudxf vardxf mux 
global mudy vardy mudyf vardyf muy 
global R RAD RRAD Radmine 
global Xobst Yobst RADOBST Cx Cy Cmx Cmy num  
global leg tf Xmine Ymine 
global traj_hist 
global avoid_hist avoid_obst XR YR 
global A E F 
global xydifferences 
%C terms are used to control tragectories.  
%Cx,Cy are variance tragectory controls 
%Cmx,Cmy are mean trajectory controls 
Ki=1;% gain of the mean  
Kivx=1; % gain of the variance 
Kivy=1; 
 
feedforward = 1;% drive robots forward in jacobian 
 
%check distance between robots and the mines, 
findmine=checkdist(q, Xmine, Ymine, Radmine); %find cloest dist and position 
closestdistmine=findmine(1,:);    %find closest mine dist 
posmine=findmine(2,:);            % position of mine 
 
%check distance between robots and the obstacles 
findobst=checkdist(q, Xobst, Yobst, R); 
closestobst=findobst(1,:); 
posobst=findobst(2,:); 
 
mux = mean(q(1:num)); % x=q... represent the states x, y, x= 1:4, y 5:8 
muy = mean(q(num+1:2*num)); % x(5:8 ) represent the y values 
varx = var(q(1:num)); % variance of x 
vary = var(q(num+1:2*num)); % variance of y 
x_d = mudxf(leg); 
y_d = mudyf(leg); 
 
   magnitude=sqrt((x_d - mux)^2+ (y_d - muy)^2); % distance from centroid of swarm 
to waypoint 
   %waypoint changes if the time is  
   for mm = 1:length(mudxf) 
       if (t < traj_hist(mm, 17)) 
           break; 
       end 
   end 
   leg = mm; 
    %calculated trajectory projection based on each leg 
    Cx = traj_hist(leg, 1:4)';  
    Cy = traj_hist(leg, 5:8)'; 
    Cmx = traj_hist(leg, 9:12)'; 
    Cmy = traj_hist(leg, 13:16)'; 
 
    mudx = Cmx'*[t^3 t^2 t 1]'; %desired x mean position 
    mudy = Cmy'*[t^3 t^2 t 1]'; %desired y mean position 
    dmudx = Cmx'*[3*t^2 2*t 1 0]';  %desired vx mean velocity, derivatives 
    dmudy = Cmy'*[3*t^2 2*t 1 0]';  %desired vy mean velocity, derivatives 
     
    varxt = Cx'*[t^3 t^2 t 1]'; %desired x position variance 
    varyt = Cy'*[t^3 t^2 t 1]'; %desired y position variance 
    dvarxt = Cx'*[3*t^2 2*t 1 0]';  %desired vx velocity variance, derivatives 
    dvaryt = Cy'*[3*t^2 2*t 1 0]';  %desired vy velocity variance, derivatives 

 
  t 
    J = [1/num*(ones(1,num)); 2/(num-1)*((q(1:num))'-mux)]; % matrix defined by 
state and task function: difference from mean in x 
    Jy = [J(1, :); 2/(num-1)*(q(num+1:2*num)' - muy)]; %alternate matrix defined by 
state -diff from mean in y 
    J = [J zeros(2, num); zeros(2, num) Jy]; %create matrix of no. by 8 to discribe 
x and y characteristics for no. roobots 
    Jp = J'*(J*J')^(-1);        % Moore-Penrose pseudo inverse T ( resultant- 3by 8 
matrix) 
  
    % attractive vectors to keep swarm moving forward 
    xa = [Km*(mudx - mux)+ feedforward*dmudx; Kv*(varxt - varx) + dvarxt];  %the 
changes in mean and variance in x with feedforward term 
    xay = [Km*(mudy - muy)+ feedforward*dmudy; Kv*(varyt - vary) + dvaryt]; %the 
changes in mean and variance in y with feedforward term 
    xd = [xa; xay];% 
 
    anglevec = zeros(1,6); % store angles of the vectors 
    % find angle for each vector in grid 
    for f=1:num     
        q1=q(f); 
        q2=q(f+num); 
        gridx=round(q1); 
        gridy=round(q2); 
         
        anglemat=[]; 
        anglemat=set_angle; 
        L_F= length(F); 
        L_A= length ( A); 
        %A=ones( length(F)); 
         
        for z=1:L_A 
            for j=1:L_F 
                if ((z==gridx) && (j==gridy)) 
                    anglevec(f)=anglemat(z,j); 
                    break; 
                end 
            end 
        end 
        anglevec(f); 
    end 
    distbtwnrobots=checksepdistance(q); % check distance between each robot 
     
%*************** generating subsumption in a single robot  
% function to calculate repulsion from each robot 
%irrep = zeros(2*num, 1); 
num_active = 0; 
for (i = 1:num)  
 
   q1=q(i); 
   q2=q(i+num); 
 
%%  BEHAVIOR:  AVOID MINE 
if ((closestdistmine(i)<=0.4)||((closestdistmine(i) <=0.8)&&(avoid_hist(i)==1))) 
    avoid_hist(i) = 1; 
    Xactm=Xmine(posmine(i));            % actual X position of mine 
    Yactm=Ymine(posmine(i));              % actual Y position of mine 
    figure(1); 
    plot( Xactm, Yactm,'gd'); 
     
    repelmine=findreppot(q1,q2,Xactm,Yactm,Radmine); 
    pot(i)=repelmine(1); 
    pot(i+num)=repelmine(2); 
    num_active = num_active + 1;     
else 
    %% BEHAVIOR:  AVOID OBSTACLE 
    if ((closestobst(i)<=0.5)||((closestobst(i) <=1)&&(avoid_hist(i)==1))) 
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        avoid_hist(i) = 1; 
        Xactobst=Xobst(posobst(i)); 
        Yactobst=Yobst(posobst(i)); 
        figure(1); 
        plot( Xactobst, Yactobst,'r*'); 
         
        repobst=findreppot(q1,q2,Xactobst,Yactobst,R); 
        pot(i)=repobst(1); 
        pot(i+num)=repobst(2); 
        num_active = num_active + 1; 
    else 
        avoid_hist(i) = 0; 
        %find largest distance between robots and the current mean 
        sepdist=findmaxsep(q1,q2,mudx, mudy); 
         
        %% BEHAVIOR:  AGGREGATION 
        if ((sepdist(1))> 6) 
            lengthc= sepdist(1); 
            anglec= sepdist(2); 
             
            pot(i)=lengthc * cos(anglec); 
            pot(i+num)=lengthc * sin(anglec); 
            num_active = num_active + 1; 
        else  
            %% BEHAVIOR:  SEPARATION 
            checkclosest=[]; 
            checkclosest=distbtwnrobots(i,:); 
            [Val, posi]=min(checkclosest); 
            px=[]; 
            eachrobotrepx=0; 
            eachrobotrepy=0; 
                         
            if Val<1; 
                %check whcih robots are closer than 1 
                for ic=1:num 
                    valuedist =checkclosest(1,ic); 
                    if valuedist<1 
                        xxd=xydifferences(i,ic); 
                        xyd=xydifferences(i,ic+num) ;  
                         
                        theta_ba=atan2(xyd, xxd); 
                        px=(1/valuedist)*cos(theta_ba); 
                        px2=(1/valuedist)*sin(theta_ba); 
                    else 
                        px=0; 
                        px2=0; 
                    end 
                    eachrobotrepx=eachrobotrepx+px; 
                    eachrobotrepy=eachrobotrepy+px2; 
                end 
                   
            pot(i)=eachrobotrepx; 
            pot(i+num)=eachrobotrepy; 
            num_active = num_active + 1;            
               
            %% BEHAVIOR:  RANDOM 
            else 
              if ((t > 0)&&(num_active < 3))  
                   pot(i) = 0.5*XR(ceil(t), i); 
                   pot(i+num) = 0.5*YR(ceil(t), i); 
                   num_active = num_active + 1;     
               else 
                    pot(i) = 0; 
                    pot(i+num) = 0; 
                end 
            end 
        end 
    end 

end 
 
end 
 
 
qdot = Jp*(xd+ [Ki*q(num*2+1); Kivx*q(num*2+2);Ki *q(num*2+3);Kivy*q(num*2+4)]) + 
Ka*(eye(2*num) - Jp*J)*(pot')+4*[cos(anglevec'); sin(anglevec')] ;; 
err = [mudx - mux; (varxt)-(varx); mudy - muy; (varyt)-(vary)]; 
 
qdot = [qdot; err]; 
 
 


